Skip to content
Snippets Groups Projects
Earcut.cs 26.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
using System;
using System.Collections.Generic;

namespace EarcutNet
{
    public class Earcut
    {
        public static List<int> Tessellate(IList<double> data, IList<int> holeIndices)
        {
            var hasHoles = holeIndices.Count > 0;
            var outerLen = hasHoles ? holeIndices[0] * 2 : data.Count;
            var outerNode = LinkedList(data, 0, outerLen, true);
            var triangles = new List<int>();

            if (outerNode == null)
            {
                return triangles;
            }

            var minX = double.PositiveInfinity;
            var minY = double.PositiveInfinity;
            var maxX = double.NegativeInfinity;
            var maxY = double.NegativeInfinity;
            var invSize = default(double);

            if (hasHoles)
            {
                outerNode = EliminateHoles(data, holeIndices, outerNode);
            }

            // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
            if (data.Count > 80 * 2)
            {
                for (int i = 0; i < outerLen; i += 2)
                {
                    double x = data[i];
                    double y = data[i + 1];

                    if (x < minX)
                    {
                        minX = x;
                    }

                    if (y < minY)
                    {
                        minY = y;
                    }

                    if (x > maxX)
                    {
                        maxX = x;
                    }

                    if (y > maxY)
                    {
                        maxY = y;
                    }
                }

                // minX, minY and invSize are later used to transform coords into integers for z-order calculation
                invSize = Math.Max(maxX - minX, maxY - minY);
                invSize = invSize != 0 ? 1 / invSize : 0;
            }

            EarcutLinked(outerNode, triangles, minX, minY, invSize, 0);

            return triangles;
        }

        // Creates a circular doubly linked list from polygon points in the specified winding order.
        static Node LinkedList(IList<double> data, int start, int end, bool clockwise)
        {
            var last = default(Node);

            if (clockwise == (SignedArea(data, start, end) > 0))
            {
                for (int i = start; i < end; i += 2)
                {
                    last = InsertNode(i, data[i], data[i + 1], last);
                }
            }
            else
            {
                for (int i = end - 2; i >= start; i -= 2)
                {
                    last = InsertNode(i, data[i], data[i + 1], last);
                }
            }

            if (last != null && Equals(last, last.next))
            {
                RemoveNode(last);
                last = last.next;
            }

            return last;
        }

        // eliminate colinear or duplicate points
        static Node FilterPoints(Node start, Node end = null)
        {
            if (start == null)
            {
                return start;
            }

            if (end == null)
            {
                end = start;
            }

            var p = start;
            bool again;

            do
            {
                again = false;

                if (!p.steiner && (Equals(p, p.next) || Area(p.prev, p, p.next) == 0))
                {
                    RemoveNode(p);
                    p = end = p.prev;
                    if (p == p.next)
                    {
                        break;
                    }

                    again = true;

                }
                else
                {
                    p = p.next;
                }
            } while (again || p != end);

            return end;
        }

        // main ear slicing loop which triangulates a polygon (given as a linked list)
        static void EarcutLinked(Node ear, IList<int> triangles, double minX, double minY, double invSize, int pass = 0)
        {
            if (ear == null)
            {
                return;
            }

            // interlink polygon nodes in z-order
            if (pass == 0 && invSize != 0)
            {
                IndexCurve(ear, minX, minY, invSize);
            }

            var stop = ear;
            Node prev;
            Node next;

            // iterate through ears, slicing them one by one
            while (ear.prev != ear.next)
            {
                prev = ear.prev;
                next = ear.next;

                if (invSize != 0 ? IsEarHashed(ear, minX, minY, invSize) : IsEar(ear))
                {
                    // cut off the triangle
                    triangles.Add(prev.i / 2);
                    triangles.Add(ear.i / 2);
                    triangles.Add(next.i / 2);

                    RemoveNode(ear);

                    // skipping the next vertex leads to less sliver triangles
                    ear = next.next;
                    stop = next.next;

                    continue;
                }

                ear = next;

                // if we looped through the whole remaining polygon and can't find any more ears
                if (ear == stop)
                {
                    // try filtering points and slicing again
                    if (pass == 0)
                    {
                        EarcutLinked(FilterPoints(ear), triangles, minX, minY, invSize, 1);

                        // if this didn't work, try curing all small self-intersections locally
                    }
                    else if (pass == 1)
                    {
                        ear = CureLocalIntersections(ear, triangles);
                        EarcutLinked(ear, triangles, minX, minY, invSize, 2);

                        // as a last resort, try splitting the remaining polygon into two
                    }
                    else if (pass == 2)
                    {
                        SplitEarcut(ear, triangles, minX, minY, invSize);
                    }

                    break;
                }
            }
        }

        // check whether a polygon node forms a valid ear with adjacent nodes
        static bool IsEar(Node ear)
        {
            var a = ear.prev;
            var b = ear;
            var c = ear.next;

            if (Area(a, b, c) >= 0)
            {
                return false; // reflex, can't be an ear
            }

            // now make sure we don't have other points inside the potential ear
            var p = ear.next.next;

            while (p != ear.prev)
            {
                if (PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                    Area(p.prev, p, p.next) >= 0)
                {
                    return false;
                }

                p = p.next;
            }

            return true;
        }

        static bool IsEarHashed(Node ear, double minX, double minY, double invSize)
        {
            var a = ear.prev;
            var b = ear;
            var c = ear.next;

            if (Area(a, b, c) >= 0)
            {
                return false; // reflex, can't be an ear
            }

            // triangle bbox; min & max are calculated like this for speed
            var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x);
            var minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y);
            var maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x);
            var maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);

            // z-order range for the current triangle bbox;
            var minZ = ZOrder(minTX, minTY, minX, minY, invSize);
            var maxZ = ZOrder(maxTX, maxTY, minX, minY, invSize);

            var p = ear.prevZ;
            var n = ear.nextZ;

            // look for points inside the triangle in both directions
            while (p != null && p.z >= minZ && n != null && n.z <= maxZ)
            {
                if (p != ear.prev && p != ear.next &&
                    PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                    Area(p.prev, p, p.next) >= 0)
                {
                    return false;
                }

                p = p.prevZ;

                if (n != ear.prev && n != ear.next &&
                    PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
                    Area(n.prev, n, n.next) >= 0)
                {
                    return false;
                }

                n = n.nextZ;
            }

            // look for remaining points in decreasing z-order
            while (p != null && p.z >= minZ)
            {
                if (p != ear.prev && p != ear.next &&
                    PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                    Area(p.prev, p, p.next) >= 0)
                {
                    return false;
                }

                p = p.prevZ;
            }

            // look for remaining points in increasing z-order
            while (n != null && n.z <= maxZ)
            {
                if (n != ear.prev && n != ear.next &&
                    PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
                    Area(n.prev, n, n.next) >= 0)
                {
                    return false;
                }

                n = n.nextZ;
            }

            return true;
        }

        // go through all polygon nodes and cure small local self-intersections
        static Node CureLocalIntersections(Node start, IList<int> triangles)
        {
            var p = start;
            do
            {
                var a = p.prev;
                var b = p.next.next;

                if (!Equals(a, b) && Intersects(a, p, p.next, b) && LocallyInside(a, b) && LocallyInside(b, a))
                {

                    triangles.Add(a.i / 2);
                    triangles.Add(p.i / 2);
                    triangles.Add(b.i / 2);

                    // remove two nodes involved
                    RemoveNode(p);
                    RemoveNode(p.next);

                    p = start = b;
                }
                p = p.next;
            } while (p != start);

            return p;
        }

        // try splitting polygon into two and triangulate them independently
        static void SplitEarcut(Node start, IList<int> triangles, double minX, double minY, double invSize)
        {
            // look for a valid diagonal that divides the polygon into two
            var a = start;
            do
            {
                var b = a.next.next;
                while (b != a.prev)
                {
                    if (a.i != b.i && IsValidDiagonal(a, b))
                    {
                        // split the polygon in two by the diagonal
                        var c = SplitPolygon(a, b);

                        // filter colinear points around the cuts
                        a = FilterPoints(a, a.next);
                        c = FilterPoints(c, c.next);

                        // run earcut on each half
                        EarcutLinked(a, triangles, minX, minY, invSize);
                        EarcutLinked(c, triangles, minX, minY, invSize);
                        return;
                    }
                    b = b.next;
                }
                a = a.next;
            } while (a != start);
        }

        // link every hole into the outer loop, producing a single-ring polygon without holes
        static Node EliminateHoles(IList<double> data, IList<int> holeIndices, Node outerNode)
        {
            var queue = new List<Node>();

            var len = holeIndices.Count;

            for (var i = 0; i < len; i++)
            {
                var start = holeIndices[i] * 2;
                var end = i < len - 1 ? holeIndices[i + 1] * 2 : data.Count;
                var list = LinkedList(data, start, end, false);
                if (list == list.next)
                {
                    list.steiner = true;
                }

                queue.Add(GetLeftmost(list));
            }

            queue.Sort(CompareX);

            // process holes from left to right
            for (var i = 0; i < queue.Count; i++)
            {
                EliminateHole(queue[i], outerNode);
                outerNode = FilterPoints(outerNode, outerNode.next);
            }

            return outerNode;
        }

        static int CompareX(Node a, Node b)
        {
            return Math.Sign(a.x - b.x);
        }

        // find a bridge between vertices that connects hole with an outer ring and and link it
        static void EliminateHole(Node hole, Node outerNode)
        {
            outerNode = FindHoleBridge(hole, outerNode);
            if (outerNode != null)
            {
                var b = SplitPolygon(outerNode, hole);
                FilterPoints(b, b.next);
            }
        }

        // David Eberly's algorithm for finding a bridge between hole and outer polygon
        static Node FindHoleBridge(Node hole, Node outerNode)
        {
            var p = outerNode;
            var hx = hole.x;
            var hy = hole.y;
            var qx = double.NegativeInfinity;
            Node m = null;

            // find a segment intersected by a ray from the hole's leftmost point to the left;
            // segment's endpoint with lesser x will be potential connection point
            do
            {
                if (hy <= p.y && hy >= p.next.y && p.next.y != p.y)
                {
                    var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
                    if (x <= hx && x > qx)
                    {
                        qx = x;
                        if (x == hx)
                        {
                            if (hy == p.y)
                            {
                                return p;
                            }

                            if (hy == p.next.y)
                            {
                                return p.next;
                            }
                        }
                        m = p.x < p.next.x ? p : p.next;
                    }
                }
                p = p.next;
            } while (p != outerNode);

            if (m == null)
            {
                return null;
            }

            if (hx == qx)
            {
                return m.prev; // hole touches outer segment; pick lower endpoint
            }

            // look for points inside the triangle of hole point, segment intersection and endpoint;
            // if there are no points found, we have a valid connection;
            // otherwise choose the point of the minimum angle with the ray as connection point

            var stop = m;
            var mx = m.x;
            var my = m.y;
            var tanMin = double.PositiveInfinity;
            double tan;

            p = m.next;

            while (p != stop)
            {
                if (hx >= p.x && p.x >= mx && hx != p.x && PointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y))
                {

                    tan = Math.Abs(hy - p.y) / (hx - p.x); // tangential

                    if ((tan < tanMin || (tan == tanMin && p.x > m.x)) && LocallyInside(p, hole))
                    {
                        m = p;
                        tanMin = tan;
                    }
                }

                p = p.next;
            }

            return m;
        }

        // interlink polygon nodes in z-order
        static void IndexCurve(Node start, double minX, double minY, double invSize)
        {
            Node p = start;
            do
            {
                if (p.z == null)
                {
                    p.z = ZOrder(p.x, p.y, minX, minY, invSize);
                }

                p.prevZ = p.prev;
                p.nextZ = p.next;
                p = p.next;
            } while (p != start);

            p.prevZ.nextZ = null;
            p.prevZ = null;

            SortLinked(p);
        }

        // Simon Tatham's linked list merge sort algorithm
        // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
        static Node SortLinked(Node list)
        {
            int i;
            Node p;
            Node q;
            Node e;
            Node tail;
            int numMerges;
            int pSize;
            int qSize;
            int inSize = 1;

            do
            {
                p = list;
                list = null;
                tail = null;
                numMerges = 0;

                while (p != null)
                {
                    numMerges++;
                    q = p;
                    pSize = 0;
                    for (i = 0; i < inSize; i++)
                    {
                        pSize++;
                        q = q.nextZ;
                        if (q == null)
                        {
                            break;
                        }
                    }
                    qSize = inSize;

                    while (pSize > 0 || (qSize > 0 && q != null))
                    {

                        if (pSize != 0 && (qSize == 0 || q == null || p.z <= q.z))
                        {
                            e = p;
                            p = p.nextZ;
                            pSize--;
                        }
                        else
                        {
                            e = q;
                            q = q.nextZ;
                            qSize--;
                        }

                        if (tail != null)
                        {
                            tail.nextZ = e;
                        }
                        else
                        {
                            list = e;
                        }

                        e.prevZ = tail;
                        tail = e;
                    }

                    p = q;
                }

                tail.nextZ = null;
                inSize *= 2;

            } while (numMerges > 1);

            return list;
        }

        // z-order of a point given coords and inverse of the longer side of data bbox
        static int ZOrder(double x, double y, double minX, double minY, double invSize)
        {
            // coords are transformed into non-negative 15-bit integer range
            int intX = (int)(32767 * (x - minX) * invSize);
            int intY = (int)(32767 * (y - minY) * invSize);

            intX = (intX | (intX << 8)) & 0x00FF00FF;
            intX = (intX | (intX << 4)) & 0x0F0F0F0F;
            intX = (intX | (intX << 2)) & 0x33333333;
            intX = (intX | (intX << 1)) & 0x55555555;

            intY = (intY | (intY << 8)) & 0x00FF00FF;
            intY = (intY | (intY << 4)) & 0x0F0F0F0F;
            intY = (intY | (intY << 2)) & 0x33333333;
            intY = (intY | (intY << 1)) & 0x55555555;

            return intX | (intY << 1);
        }

        // find the leftmost node of a polygon ring
        static Node GetLeftmost(Node start)
        {
            Node p = start;
            Node leftmost = start;
            do
            {
                if (p.x < leftmost.x)
                {
                    leftmost = p;
                }

                p = p.next;
            } while (p != start);

            return leftmost;
        }

        // check if a point lies within a convex triangle
        static bool PointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py)
        {
            return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
                   (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
                   (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
        }

        // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
        static bool IsValidDiagonal(Node a, Node b)
        {
            return a.next.i != b.i && a.prev.i != b.i && !IntersectsPolygon(a, b) &&
                   LocallyInside(a, b) && LocallyInside(b, a) && MiddleInside(a, b);
        }

        // signed area of a triangle
        static double Area(Node p, Node q, Node r)
        {
            return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
        }

        // check if two points are equal
        static bool Equals(Node p1, Node p2)
        {
            return p1.x == p2.x && p1.y == p2.y;
        }

        // check if two segments intersect
        static bool Intersects(Node p1, Node q1, Node p2, Node q2)
        {
            if ((Equals(p1, q1) && Equals(p2, q2)) ||
                (Equals(p1, q2) && Equals(p2, q1)))
            {
                return true;
            }

            return Area(p1, q1, p2) > 0 != Area(p1, q1, q2) > 0 &&
                   Area(p2, q2, p1) > 0 != Area(p2, q2, q1) > 0;
        }

        // check if a polygon diagonal intersects any polygon segments
        static bool IntersectsPolygon(Node a, Node b)
        {
            Node p = a;
            do
            {
                if (p.i != a.i && p.next.i != a.i && p.i != b.i && p.next.i != b.i &&
                        Intersects(p, p.next, a, b))
                {
                    return true;
                }

                p = p.next;
            } while (p != a);

            return false;
        }

        // check if a polygon diagonal is locally inside the polygon
        static bool LocallyInside(Node a, Node b)
        {
            return Area(a.prev, a, a.next) < 0 ?
                Area(a, b, a.next) >= 0 && Area(a, a.prev, b) >= 0 :
                Area(a, b, a.prev) < 0 || Area(a, a.next, b) < 0;
        }

        // check if the middle point of a polygon diagonal is inside the polygon
        static bool MiddleInside(Node a, Node b)
        {
            var p = a;
            var inside = false;
            var px = (a.x + b.x) / 2;
            var py = (a.y + b.y) / 2;
            do
            {
                if (((p.y > py) != (p.next.y > py)) && p.next.y != p.y &&
                        (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
                {
                    inside = !inside;
                }

                p = p.next;
            } while (p != a);

            return inside;
        }

        // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
        // if one belongs to the outer ring and another to a hole, it merges it into a single ring
        static Node SplitPolygon(Node a, Node b)
        {
            var a2 = new Node(a.i, a.x, a.y);
            var b2 = new Node(b.i, b.x, b.y);
            var an = a.next;
            var bp = b.prev;

            a.next = b;
            b.prev = a;

            a2.next = an;
            an.prev = a2;

            b2.next = a2;
            a2.prev = b2;

            bp.next = b2;
            b2.prev = bp;

            return b2;
        }

        // create a node and optionally link it with previous one (in a circular doubly linked list)
        static Node InsertNode(int i, double x, double y, Node last)
        {
            var p = new Node(i, x, y);

            if (last == null)
            {
                p.prev = p;
                p.next = p;

            }
            else
            {
                p.next = last.next;
                p.prev = last;
                last.next.prev = p;
                last.next = p;
            }
            return p;
        }

        static void RemoveNode(Node p)
        {
            p.next.prev = p.prev;
            p.prev.next = p.next;

            if (p.prevZ != null)
            {
                p.prevZ.nextZ = p.nextZ;
            }

            if (p.nextZ != null)
            {
                p.nextZ.prevZ = p.prevZ;
            }
        }

        class Node
        {
            public int i;
            public double x;
            public double y;

            public int? z;

            public Node prev;
            public Node next;

            public Node prevZ;
            public Node nextZ;

            public bool steiner;

            public Node(int i, double x, double y)
            {
                // vertex index in coordinates array
                this.i = i;

                // vertex coordinates
                this.x = x;
                this.y = y;

                // previous and next vertex nodes in a polygon ring
                this.prev = null;
                this.next = null;

                // z-order curve value
                this.z = null;

                // previous and next nodes in z-order
                this.prevZ = null;
                this.nextZ = null;

                // indicates whether this is a steiner point
                this.steiner = false;
            }
        }

        static double SignedArea(IList<double> data, int start, int end)
        {
            var sum = default(double);

            for (int i = start, j = end - 2; i < end; i += 2)
            {
                sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
                j = i;
            }

            return sum;
        }

        // return a percentage difference between the polygon area and its triangulation area;
        // used to verify correctness of triangulation
        public static double Deviation(IList<double> data, IList<int> holeIndices, IList<int> triangles)
        {
            var hasHoles = holeIndices.Count > 0;
            var outerLen = hasHoles ? holeIndices[0] * 2 : data.Count;

            var polygonArea = Math.Abs(SignedArea(data, 0, outerLen));
            if (hasHoles)
            {
                var len = holeIndices.Count;

                for (var i = 0; i < len; i++)
                {
                    var start = holeIndices[i] * 2;
                    var end = i < len - 1 ? holeIndices[i + 1] * 2 : data.Count;
                    polygonArea -= Math.Abs(SignedArea(data, start, end));
                }
            }

            var trianglesArea = default(double);
            for (var i = 0; i < triangles.Count; i += 3)
            {
                var a = triangles[i] * 2;
                var b = triangles[i + 1] * 2;
                var c = triangles[i + 2] * 2;
                trianglesArea += Math.Abs(
                    (data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
                    (data[a] - data[b]) * (data[c + 1] - data[a + 1]));
            }

            return polygonArea == 0 && trianglesArea == 0 ? 0 :
                Math.Abs((trianglesArea - polygonArea) / polygonArea);
        }
    }
}