using System; using System.Collections.Generic; namespace EarcutNet { public class Earcut { public static List<int> Tessellate(IList<double> data, IList<int> holeIndices) { var hasHoles = holeIndices.Count > 0; var outerLen = hasHoles ? holeIndices[0] * 2 : data.Count; var outerNode = LinkedList(data, 0, outerLen, true); var triangles = new List<int>(); if (outerNode == null) { return triangles; } var minX = double.PositiveInfinity; var minY = double.PositiveInfinity; var maxX = double.NegativeInfinity; var maxY = double.NegativeInfinity; var invSize = default(double); if (hasHoles) { outerNode = EliminateHoles(data, holeIndices, outerNode); } // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (data.Count > 80 * 2) { for (int i = 0; i < outerLen; i += 2) { double x = data[i]; double y = data[i + 1]; if (x < minX) { minX = x; } if (y < minY) { minY = y; } if (x > maxX) { maxX = x; } if (y > maxY) { maxY = y; } } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.Max(maxX - minX, maxY - minY); invSize = invSize != 0 ? 1 / invSize : 0; } EarcutLinked(outerNode, triangles, minX, minY, invSize, 0); return triangles; } // Creates a circular doubly linked list from polygon points in the specified winding order. static Node LinkedList(IList<double> data, int start, int end, bool clockwise) { var last = default(Node); if (clockwise == (SignedArea(data, start, end) > 0)) { for (int i = start; i < end; i += 2) { last = InsertNode(i, data[i], data[i + 1], last); } } else { for (int i = end - 2; i >= start; i -= 2) { last = InsertNode(i, data[i], data[i + 1], last); } } if (last != null && Equals(last, last.next)) { RemoveNode(last); last = last.next; } return last; } // eliminate colinear or duplicate points static Node FilterPoints(Node start, Node end = null) { if (start == null) { return start; } if (end == null) { end = start; } var p = start; bool again; do { again = false; if (!p.steiner && (Equals(p, p.next) || Area(p.prev, p, p.next) == 0)) { RemoveNode(p); p = end = p.prev; if (p == p.next) { break; } again = true; } else { p = p.next; } } while (again || p != end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) static void EarcutLinked(Node ear, IList<int> triangles, double minX, double minY, double invSize, int pass = 0) { if (ear == null) { return; } // interlink polygon nodes in z-order if (pass == 0 && invSize != 0) { IndexCurve(ear, minX, minY, invSize); } var stop = ear; Node prev; Node next; // iterate through ears, slicing them one by one while (ear.prev != ear.next) { prev = ear.prev; next = ear.next; if (invSize != 0 ? IsEarHashed(ear, minX, minY, invSize) : IsEar(ear)) { // cut off the triangle triangles.Add(prev.i / 2); triangles.Add(ear.i / 2); triangles.Add(next.i / 2); RemoveNode(ear); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear == stop) { // try filtering points and slicing again if (pass == 0) { EarcutLinked(FilterPoints(ear), triangles, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally } else if (pass == 1) { ear = CureLocalIntersections(ear, triangles); EarcutLinked(ear, triangles, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass == 2) { SplitEarcut(ear, triangles, minX, minY, invSize); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes static bool IsEar(Node ear) { var a = ear.prev; var b = ear; var c = ear.next; if (Area(a, b, c) >= 0) { return false; // reflex, can't be an ear } // now make sure we don't have other points inside the potential ear var p = ear.next.next; while (p != ear.prev) { if (PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && Area(p.prev, p, p.next) >= 0) { return false; } p = p.next; } return true; } static bool IsEarHashed(Node ear, double minX, double minY, double invSize) { var a = ear.prev; var b = ear; var c = ear.next; if (Area(a, b, c) >= 0) { return false; // reflex, can't be an ear } // triangle bbox; min & max are calculated like this for speed var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x); var minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y); var maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x); var maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); // z-order range for the current triangle bbox; var minZ = ZOrder(minTX, minTY, minX, minY, invSize); var maxZ = ZOrder(maxTX, maxTY, minX, minY, invSize); var p = ear.prevZ; var n = ear.nextZ; // look for points inside the triangle in both directions while (p != null && p.z >= minZ && n != null && n.z <= maxZ) { if (p != ear.prev && p != ear.next && PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && Area(p.prev, p, p.next) >= 0) { return false; } p = p.prevZ; if (n != ear.prev && n != ear.next && PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && Area(n.prev, n, n.next) >= 0) { return false; } n = n.nextZ; } // look for remaining points in decreasing z-order while (p != null && p.z >= minZ) { if (p != ear.prev && p != ear.next && PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && Area(p.prev, p, p.next) >= 0) { return false; } p = p.prevZ; } // look for remaining points in increasing z-order while (n != null && n.z <= maxZ) { if (n != ear.prev && n != ear.next && PointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && Area(n.prev, n, n.next) >= 0) { return false; } n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections static Node CureLocalIntersections(Node start, IList<int> triangles) { var p = start; do { var a = p.prev; var b = p.next.next; if (!Equals(a, b) && Intersects(a, p, p.next, b) && LocallyInside(a, b) && LocallyInside(b, a)) { triangles.Add(a.i / 2); triangles.Add(p.i / 2); triangles.Add(b.i / 2); // remove two nodes involved RemoveNode(p); RemoveNode(p.next); p = start = b; } p = p.next; } while (p != start); return p; } // try splitting polygon into two and triangulate them independently static void SplitEarcut(Node start, IList<int> triangles, double minX, double minY, double invSize) { // look for a valid diagonal that divides the polygon into two var a = start; do { var b = a.next.next; while (b != a.prev) { if (a.i != b.i && IsValidDiagonal(a, b)) { // split the polygon in two by the diagonal var c = SplitPolygon(a, b); // filter colinear points around the cuts a = FilterPoints(a, a.next); c = FilterPoints(c, c.next); // run earcut on each half EarcutLinked(a, triangles, minX, minY, invSize); EarcutLinked(c, triangles, minX, minY, invSize); return; } b = b.next; } a = a.next; } while (a != start); } // link every hole into the outer loop, producing a single-ring polygon without holes static Node EliminateHoles(IList<double> data, IList<int> holeIndices, Node outerNode) { var queue = new List<Node>(); var len = holeIndices.Count; for (var i = 0; i < len; i++) { var start = holeIndices[i] * 2; var end = i < len - 1 ? holeIndices[i + 1] * 2 : data.Count; var list = LinkedList(data, start, end, false); if (list == list.next) { list.steiner = true; } queue.Add(GetLeftmost(list)); } queue.Sort(CompareX); // process holes from left to right for (var i = 0; i < queue.Count; i++) { EliminateHole(queue[i], outerNode); outerNode = FilterPoints(outerNode, outerNode.next); } return outerNode; } static int CompareX(Node a, Node b) { return Math.Sign(a.x - b.x); } // find a bridge between vertices that connects hole with an outer ring and and link it static void EliminateHole(Node hole, Node outerNode) { outerNode = FindHoleBridge(hole, outerNode); if (outerNode != null) { var b = SplitPolygon(outerNode, hole); FilterPoints(b, b.next); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon static Node FindHoleBridge(Node hole, Node outerNode) { var p = outerNode; var hx = hole.x; var hy = hole.y; var qx = double.NegativeInfinity; Node m = null; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y != p.y) { var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; if (x == hx) { if (hy == p.y) { return p; } if (hy == p.next.y) { return p.next; } } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while (p != outerNode); if (m == null) { return null; } if (hx == qx) { return m.prev; // hole touches outer segment; pick lower endpoint } // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point var stop = m; var mx = m.x; var my = m.y; var tanMin = double.PositiveInfinity; double tan; p = m.next; while (p != stop) { if (hx >= p.x && p.x >= mx && hx != p.x && PointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { tan = Math.Abs(hy - p.y) / (hx - p.x); // tangential if ((tan < tanMin || (tan == tanMin && p.x > m.x)) && LocallyInside(p, hole)) { m = p; tanMin = tan; } } p = p.next; } return m; } // interlink polygon nodes in z-order static void IndexCurve(Node start, double minX, double minY, double invSize) { Node p = start; do { if (p.z == null) { p.z = ZOrder(p.x, p.y, minX, minY, invSize); } p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p != start); p.prevZ.nextZ = null; p.prevZ = null; SortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html static Node SortLinked(Node list) { int i; Node p; Node q; Node e; Node tail; int numMerges; int pSize; int qSize; int inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while (p != null) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (q == null) { break; } } qSize = inSize; while (pSize > 0 || (qSize > 0 && q != null)) { if (pSize != 0 && (qSize == 0 || q == null || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail != null) { tail.nextZ = e; } else { list = e; } e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and inverse of the longer side of data bbox static int ZOrder(double x, double y, double minX, double minY, double invSize) { // coords are transformed into non-negative 15-bit integer range int intX = (int)(32767 * (x - minX) * invSize); int intY = (int)(32767 * (y - minY) * invSize); intX = (intX | (intX << 8)) & 0x00FF00FF; intX = (intX | (intX << 4)) & 0x0F0F0F0F; intX = (intX | (intX << 2)) & 0x33333333; intX = (intX | (intX << 1)) & 0x55555555; intY = (intY | (intY << 8)) & 0x00FF00FF; intY = (intY | (intY << 4)) & 0x0F0F0F0F; intY = (intY | (intY << 2)) & 0x33333333; intY = (intY | (intY << 1)) & 0x55555555; return intX | (intY << 1); } // find the leftmost node of a polygon ring static Node GetLeftmost(Node start) { Node p = start; Node leftmost = start; do { if (p.x < leftmost.x) { leftmost = p; } p = p.next; } while (p != start); return leftmost; } // check if a point lies within a convex triangle static bool PointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) { return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) static bool IsValidDiagonal(Node a, Node b) { return a.next.i != b.i && a.prev.i != b.i && !IntersectsPolygon(a, b) && LocallyInside(a, b) && LocallyInside(b, a) && MiddleInside(a, b); } // signed area of a triangle static double Area(Node p, Node q, Node r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal static bool Equals(Node p1, Node p2) { return p1.x == p2.x && p1.y == p2.y; } // check if two segments intersect static bool Intersects(Node p1, Node q1, Node p2, Node q2) { if ((Equals(p1, q1) && Equals(p2, q2)) || (Equals(p1, q2) && Equals(p2, q1))) { return true; } return Area(p1, q1, p2) > 0 != Area(p1, q1, q2) > 0 && Area(p2, q2, p1) > 0 != Area(p2, q2, q1) > 0; } // check if a polygon diagonal intersects any polygon segments static bool IntersectsPolygon(Node a, Node b) { Node p = a; do { if (p.i != a.i && p.next.i != a.i && p.i != b.i && p.next.i != b.i && Intersects(p, p.next, a, b)) { return true; } p = p.next; } while (p != a); return false; } // check if a polygon diagonal is locally inside the polygon static bool LocallyInside(Node a, Node b) { return Area(a.prev, a, a.next) < 0 ? Area(a, b, a.next) >= 0 && Area(a, a.prev, b) >= 0 : Area(a, b, a.prev) < 0 || Area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon static bool MiddleInside(Node a, Node b) { var p = a; var inside = false; var px = (a.x + b.x) / 2; var py = (a.y + b.y) / 2; do { if (((p.y > py) != (p.next.y > py)) && p.next.y != p.y && (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) { inside = !inside; } p = p.next; } while (p != a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring static Node SplitPolygon(Node a, Node b) { var a2 = new Node(a.i, a.x, a.y); var b2 = new Node(b.i, b.x, b.y); var an = a.next; var bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) static Node InsertNode(int i, double x, double y, Node last) { var p = new Node(i, x, y); if (last == null) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } static void RemoveNode(Node p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ != null) { p.prevZ.nextZ = p.nextZ; } if (p.nextZ != null) { p.nextZ.prevZ = p.prevZ; } } class Node { public int i; public double x; public double y; public int? z; public Node prev; public Node next; public Node prevZ; public Node nextZ; public bool steiner; public Node(int i, double x, double y) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } } static double SignedArea(IList<double> data, int start, int end) { var sum = default(double); for (int i = start, j = end - 2; i < end; i += 2) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); j = i; } return sum; } // return a percentage difference between the polygon area and its triangulation area; // used to verify correctness of triangulation public static double Deviation(IList<double> data, IList<int> holeIndices, IList<int> triangles) { var hasHoles = holeIndices.Count > 0; var outerLen = hasHoles ? holeIndices[0] * 2 : data.Count; var polygonArea = Math.Abs(SignedArea(data, 0, outerLen)); if (hasHoles) { var len = holeIndices.Count; for (var i = 0; i < len; i++) { var start = holeIndices[i] * 2; var end = i < len - 1 ? holeIndices[i + 1] * 2 : data.Count; polygonArea -= Math.Abs(SignedArea(data, start, end)); } } var trianglesArea = default(double); for (var i = 0; i < triangles.Count; i += 3) { var a = triangles[i] * 2; var b = triangles[i + 1] * 2; var c = triangles[i + 2] * 2; trianglesArea += Math.Abs( (data[a] - data[c]) * (data[b + 1] - data[a + 1]) - (data[a] - data[b]) * (data[c + 1] - data[a + 1])); } return polygonArea == 0 && trianglesArea == 0 ? 0 : Math.Abs((trianglesArea - polygonArea) / polygonArea); } } }