Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
CiFoS_Crops
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simon, Wolfram
CiFoS_Crops
Commits
c8d1565b
Commit
c8d1565b
authored
4 years ago
by
Simon, Wolfram
Browse files
Options
Downloads
Patches
Plain Diff
Fertilization rates are done
parent
528217e6
Branches
master
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Fertilization_rates/Fertilizatio_rates.R
+47
-34
47 additions, 34 deletions
Fertilization_rates/Fertilizatio_rates.R
with
47 additions
and
34 deletions
Fertilization_rates/Fertilizatio_rates.R
+
47
−
34
View file @
c8d1565b
...
...
@@ -106,70 +106,83 @@ crops_NP_map = crops_NP %>% left_join(., SPAM2010_CropList, by="short_spam2010")
# --> DONE in excel
# Calculate total NP content per crop - NP content DM * production
# Calculating the crop requirements (country, crop, all intensity levels combined (A))
> assign the FAO consumption to the crops based on requirements
# Calculating the crop requirements (country, crop, all intensity levels combined (A))
NP_content
=
crops_NP_map
%>%
right_join
(
.
,
SPAM_EU28_dat
,
by
=
c
(
"short_spam2010"
=
"crops_spam"
))
%>%
mutate
(
Nutr_req_harv_N
=
Ntotal
/
100
*
(
DM_perc
)
*
Production_mt
,
Nutr_req_harv_P
=
Ptotal
/
100
*
(
DM_perc
)
*
Production_mt
)
%>%
# rename(Country = Country.x) %>%
dplyr
::
select
(
short_spam2010
,
code_fao
,
iso3
,
country_cifos
,
peat
,
HarvestedArea_ha
,
Production_mt
,
PhysicalArea_ha
,
Yield_kgha
,
Nutr_req_harv_N
,
Nutr_req_harv_P
)
mutate
(
Nutr_req_harv_N
=
(
Ntotal
/
100
)
*
(
DM_perc
/
100
)
*
Production_mt
,
#NP removal from production
Nutr_req_harv_P
=
(
Ptotal
/
100
)
*
(
DM_perc
/
100
)
*
Production_mt
)
%>%
mutate
(
N_removal_kgha
=
Nutr_req_harv_N
*
1000
/
HarvestedArea_ha
,
#NP removal (kg/ha) from yields (transforming tonnes to kg)
P_removal_kgha
=
Nutr_req_harv_P
*
1000
/
HarvestedArea_ha
)
%>%
mutate_at
(
vars
(
N_removal_kgha
,
P_removal_kgha
),
~
replace
(
.
,
is.nan
(
.
),
0
))
%>%
dplyr
::
select
(
short_spam2010
,
code_fao
,
iso3
,
country_cifos
,
peat
,
HarvestedArea_ha
,
Production_mt
,
PhysicalArea_ha
,
Yield_kgha
,
Nutr_req_harv_N
,
Nutr_req_harv_P
,
N_removal_kgha
,
P_removal_kgha
)
# ggplot(NP_content, aes(y=N_removal_kgha))+
# geom_histogram()
# Ratio of crops per defined zones (here per crop and country) ------------
NP_content_ratio
=
NP_content
%>%
pivot_longer
(
cols
=
"Nutr_req_harv_N"
:
"Nutr_req_harv_P"
,
names_to
=
"nutr_req"
)
%>%
pivot_longer
(
cols
=
"Nutr_req_harv_N"
:
"Nutr_req_harv_P"
,
names_to
=
"nutr_req_production"
)
%>%
# pivot_longer(cols= "N_removal_kgha":"P_removal_kgha", names_to = "nutr_req_yield", names_repair = "unique")
mutate_at
(
vars
(
value
),
~
replace
(
.
,
is.nan
(
.
),
0
))
%>%
group_by
(
iso3
,
nutr_req
)
%>%
mutate
(
perc
=
value
/
sum
(
value
))
%>%
mutate
(
label
=
case_when
(
stringi
::
stri_detect_fixed
(
nutr_req
,
"_N"
)
~
"N"
,
stringi
::
stri_detect_fixed
(
nutr_req
,
"_P"
)
~
"P"
))
group_by
(
iso3
,
nutr_req_production
)
%>%
mutate
(
NP_content_ratio
=
value
/
sum
(
value
))
%>%
# mutate(NP_content_ratio_yld = value...13/sum(value...13)) %>%
mutate
(
label
=
case_when
(
stringi
::
stri_detect_fixed
(
nutr_req_production
,
"_N"
)
~
"N"
,
stringi
::
stri_detect_fixed
(
nutr_req_production
,
"_P"
)
~
"P"
))
# eval - all correct (28.04.2021)
# val=NP_content_ratio %>% group_by(iso3, nutr_req) %>%
# summarize(val = sum(perc))
# FAO NP consumption data: Creating three year average and cleaning variables
avg_yr_all_EU28
=
fertilizer_FAO_EU28
%>%
group_by
(
Area
,
Element
,
Domain
,
Item
)
%>%
mutate
(
Value
=
mean
(
Value
))
%>%
#creating three year average
filter
(
Year
==
2010
)
%>%
dplyr
::
select
(
-
c
(
`Domain Code`
,
`Year Code`
))
%>%
mutate
(
Value
=
case_when
(
Item
==
"Nutrient phosphate P2O5 (total)"
~
Value
/
2.29
,
#converting P2O5 to P > conversion facrotr 2.29 https://www.researchgate.net/post/How-to-calculate-phosphorous-from-P2O5-which-has-been-recommended-at-the-standard-dose-of-45-kg-ha,
Item
==
"Nutrient nitrogen N (total)"
~
Value
),
Item
=
recode
(
Item
,
'Nutrient phosphate P2O5 (total)'
=
"Nutrient phosphate P (total)"
))
#
# FAO NP consumption data: Creating three year average and cleaning variables
#
avg_yr_all_EU28 = fertilizer_FAO_EU28 %>%
#
group_by(Area, Element, Domain, Item) %>%
#
mutate(Value = mean(Value)) %>% #creating three year average
#
filter(Year==2010) %>%
#
dplyr::select(-c(`Domain Code`, `Year Code`)) %>%
#
mutate(Value = case_when(Item == "Nutrient phosphate P2O5 (total)" ~ Value/2.29, #converting P2O5 to P > conversion facrotr 2.29 https://www.researchgate.net/post/How-to-calculate-phosphorous-from-P2O5-which-has-been-recommended-at-the-standard-dose-of-45-kg-ha,
https://plants.usda.gov/npk/fertilizer_equivalents_def.html
#
Item == "Nutrient nitrogen N (total)" ~ Value),
#
Item = recode(Item,'Nutrient phosphate P2O5 (total)' = "Nutrient phosphate P (total)"))
#
nutrients_FAO_2010_EU28
=
fertilizer_FAO_EU28
%>%
group_by
(
Area
,
Element
,
Domain
,
Item
)
%>%
mutate
(
Value
=
mean
(
Value
))
%>%
#creating three year average
filter
(
Year
==
2010
)
%>%
# dplyr::select(-c(`Domain Code`, `Year Code`)) %>%
mutate
(
Value
=
case_when
(
Item
==
"Nutrient phosphate P2O5 (total)"
~
Value
/
2.29
,
#converting P2O5 to P > conversion facrotr 2.29 https://www.researchgate.net/post/How-to-calculate-phosphorous-from-P2O5-which-has-been-recommended-at-the-standard-dose-of-45-kg-ha,
mutate
(
Value
=
case_when
(
Item
==
"Nutrient phosphate P2O5 (total)"
~
Value
/
2.29
,
#converting P2O5 to P > conversion facrotr 2.29 https://www.researchgate.net/post/How-to-calculate-phosphorous-from-P2O5-which-has-been-recommended-at-the-standard-dose-of-45-kg-ha,
https://plants.usda.gov/npk/fertilizer_equivalents_def.html
Item
==
"Nutrient nitrogen N (total)"
~
Value
),
Item
=
recode
(
Item
,
'Nutrient phosphate P2O5 (total)'
=
"Nutrient phosphate P (total)"
))
%>%
dplyr
::
select
(
Area
,
iso3_code_FAO
,
`Area Code`
,
Domain
,
Item
,
`Item Code`
,
Year
,
Value
)
# Identify the gap between FAO and Requirements
#
Adding NP labels, multiplying FAO consumption with crop share ratios and
Identify the gap between FAO and Requirements
gapFAO_SPAM
=
nutrients_FAO_2010_EU28
%>%
mutate
(
label
=
case_when
(
stringi
::
stri_detect_fixed
(
Item
,
"nitrogen"
)
~
"N"
,
stringi
::
stri_detect_fixed
(
Item
,
"phosphate"
)
~
"P"
))
%>%
# pivot_wider(names_from = Item, values_from = Value)
# dplyr::select(-c(Domain, `Area Code`, Item))# %>%
right_join
(
.
,
NP_content_ratio
,
by
=
c
(
"iso3_code_FAO"
=
"iso3"
,
"label"
=
"label"
))
%>%
arrange
(
Area
)
# filter(Element == "Production") %>%
# distinct_at(vars(Area, short_spam2010), .keep_all = T) %>%
mutate
(
N_gap
=
Value
-
Nutr_req_harv_N
,
P_gap
=
Value
-
Nutr_req_harv_P
)
# What is with negative gaps?
mutate
(
FAO_nutr
=
NP_content_ratio
*
Value
)
%>%
mutate
(
nutr_gap
=
case_when
(
value
>
0
~
FAO_nutr
-
value
,
# We look at the gap btw the ratio of fao and the ratio of crop-contetnt related fertilizer use
TRUE
~
0
))
%>%
mutate
(
fert_rate_FAO_SPAM
=
case_when
(
nutr_gap
>
0
&
label
==
"N"
~
nutr_gap
/
HarvestedArea_ha
+
N_removal_kgha
,
nutr_gap
>
0
&
label
==
"P"
~
nutr_gap
/
HarvestedArea_ha
+
P_removal_kgha
,
nutr_gap
<=
0
&
label
==
"P"
~
nutr_gap
/
HarvestedArea_ha
+
P_removal_kgha
,
nutr_gap
<=
0
&
label
==
"N"
~
nutr_gap
/
HarvestedArea_ha
+
N_removal_kgha
))
%>%
mutate_at
(
vars
(
fert_rate_FAO_SPAM
),
~
replace
(
.
,
is.nan
(
.
),
0
))
z
mean
(
gapFAO_SPAM
$
fert_rate_FAO_SPAM
)
# gapFAO_SPAM %>%
# ggplot(aes(y=fert_rate))+
# geom_histogram(bins = 5)
# Calculate the ratio of each crop per Zone, country based on requirements (Allocation factor based) > Scaling
# Ratio from NP values of the crops in EU27
NP_ratio
=
NP_content_ratio
%>%
dplyr
::
select
(
iso3
,
peat
,
label
,
short_spam2010
,
NP_content_ratio
)
fert_rates_alloc
=
gapFAO_SPAM
%>%
mutate
(
FAO_fert_alloc
=
NP_content_ratio
*
Value
)
# allocate the amount of NP fertilizer (GAP between requirement and FAO) to the crops based on the allocation factor based on point 2
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment