Skip to content
Snippets Groups Projects
Commit a7df76d4 authored by Simon, Wolfram's avatar Simon, Wolfram
Browse files

deleted weired headers

parent a76eba84
Branches
No related tags found
No related merge requests found
Loading packages --------------------------------------------------------
# Loading packages --------------------------------------------------------
# Loading the packages
# .libPaths("C:/Wolfram_Admin/R-4.1.2/R-4.1.2/library")
# install.packages("easypackages", dependencies = T)
# library("easypackages")
# Loading packages
easypackages::packages("odbc","DBI", "RSQLite", "dbplyr", "readxl", "fuzzyjoin",
<<<<<<< HEAD
"sqldf", "downloader", "tidyverse", "janitor", "FAOSTAT",
=======
"sqldf", "downloader", "tidyverse", "janitor", "FAOSTAT",
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
"validate")
# https://www.youtube.com/watch?v=CydajdNRJOU -----------------------------
......@@ -247,7 +244,7 @@ dat_crop_final = read_csv("Input_data/dat_crop_with_grass_final.csv") %>%
# Adding the grass to the old crop name columns so it will not result in NA later.
dplyr::mutate(old_cifos_crop = case_when(is.na(old_cifos_crop) ~ crop_cifos,
TRUE ~ old_cifos_crop))
# Fuzzy join of processing sheet and the crop map
# crop_map_cifos_procraw =
dat_proc = Processing_sheet %>%
......@@ -508,11 +505,7 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_tapiocain", proc_out = "cassava_tapioca", value = 0.2, dietary_products = "Cassava and products") %>%
add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_dryin", proc_out = "cassava_dry", value = 0.35, dietary_products = "Cassava and products") %>%
add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_starchin", proc_out = "cassava_starch", value = 0.25, dietary_products = "Cassava and products") %>%
<<<<<<< HEAD
=======
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
# Pearl millet -- Source: from Technical Conversion Factors for Agricultural Commodities (http://countrystat.org/resources/documents/tcf.pdf); adjusted commodity tree; fractions from "cereals/millet"
# levels: only one level
add_row(crop_cifos = "pearl_millet" , proc_raw = "pearl_millet" , proc_in = "pearl_millet_flourin", proc_out = "pearl_millet_flour", value = 0.86, dietary_products = "Millet and products") %>%
......@@ -870,21 +863,6 @@ dat_proc_asf =
clean_names() %>% rename(proc_raw = pro_raw) %>%
slice(269:363) %>%
dplyr::mutate(dietary_products= case_when(proc_raw == "Milk" ~ "Milk - Excluding Butter",
<<<<<<< HEAD
TRUE ~ dietary_products),
dietary_products= case_when(proc_out == "Butter" ~ "Butter, Ghee",
TRUE ~ dietary_products),
dietary_products= case_when(dietary_products == "Fish (Calculated CiFoS)" ~ "Fish, Seafood",
TRUE ~ dietary_products),
proc_out = case_when(proc_out == "Butter_Milk" ~ "Butter_milk",
TRUE ~ proc_out)) #this was written with a uppercase here and a lower case in the food losses sheet
Processing_sheet_final = bind_rows(dat_proc_new %>% dplyr::select(-crop_cifos),dat_proc_asf)
write_csv(Processing_sheet_final, "Input_data/processing_sheet.csv")
=======
TRUE ~ dietary_products),
dietary_products= case_when(proc_out == "Butter" ~ "Butter, Ghee",
TRUE ~ dietary_products),
......@@ -898,7 +876,6 @@ write_csv(Processing_sheet_final, "Input_data/processing_sheet.csv")
Processing_sheet_final = bind_rows(dat_proc_new %>% dplyr::select(-crop_cifos),dat_proc_asf)
write_csv(Processing_sheet_final, "Input_data/processing_sheet.csv")
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
# Human nutrition sheet ---------------------------------------------------
# Human nutrtion sheet
......@@ -1007,11 +984,7 @@ hum_nutr_all = bind_rows(food_old_match, food_psf_new, food_asf)
# check = full_join(hum_nutr_all, proc_new, by = c("product"="proc_out"))
write_csv(hum_nutr_all, "Input_data/hum_nutr_all.csv")
<<<<<<< HEAD
=======
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
# Animal nutrition new ----------------------------------------------------
# Cifos sheet
......@@ -2159,11 +2132,7 @@ crop_other_new =
distinct_at(vars(crop_cifos),.keep_all = T) %>% drop_na(crop_cifos)
write_csv(crop_other_new, "Input_Data/crop_other_new.csv")
<<<<<<< HEAD
=======
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
# cropnutr = read_excel('C:/Wolfram_Admin/GAMS/EU_model_frmSep21/cifos-model_eu/European_CiFoS_model_data.xlsx',sheet="CropNutr")
# write_csv(cropnutr,"Input_data/cropnutr_old")
cropnutr = read_csv("Input_data/cropnutr_old")
......@@ -2174,13 +2143,8 @@ cropnutr_new =
full_join(crop_map %>% dplyr::select(old_cifos_crop, crop_cifos), by = c("crop_cifos_old"="old_cifos_crop")) %>%
relocate(crop_cifos, .before = crop_cifos_old) %>%
dplyr::select(-crop_cifos_old)
<<<<<<< HEAD
write_csv(cropnutr_new, "Input_data/cropnutr_new.csv")
=======
write_csv(cropnutr_new, "Input_data/cropnutr_new.csv")
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
# CropFert_New NOT DONE! ------------------------------------------------------------
# CropFert_New = read_excel("C:/Wolfram_Admin/GAMS/EU_model_frmSep21/cifos-model_eu/European_CiFoS_model_data.xlsx", sheet = "CropFert_New")
......@@ -2311,7 +2275,6 @@ write_csv(animal_map, "Input_Data/diets_animal_crop_datamap.csv")
# # Animals
# #Animal_yield sheet
# 1. Yields (column D row 2)
<<<<<<< HEAD
......@@ -2323,5 +2286,3 @@ write_csv(animal_map, "Input_Data/diets_animal_crop_datamap.csv")
=======
>>>>>>> bdd608029dd5899a8a1a0b93359f2d957d331ba1
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment