Skip to content
Snippets Groups Projects
Commit 823b5ad3 authored by brunner's avatar brunner
Browse files

No commit message

No commit message
parent b4db9173
No related branches found
No related tags found
No related merge requests found
"""CarbonTracker Data Assimilation Shell (CTDAS) Copyright (C) 2017 Wouter Peters.
Users are recommended to contact the developers (wouter.peters@wur.nl) to receive
updates of the code. See also: http://www.carbontracker.eu.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
version 3. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>."""
#!/usr/bin/env python
# optimizer.py
"""
.. module:: optimizer
.. moduleauthor:: Wouter Peters
Revision History:
File created on 28 Jul 2010.
"""
import logging
import numpy as np
import numpy.linalg as la
import da.tools.io4 as io
identifier = 'Optimizer baseclass'
version = '0.0'
################### Begin Class Optimizer ###################
class Optimizer(object):
"""
This creates an instance of an optimization object. It handles the minimum least squares optimization
of the state vector given a set of sample objects. Two routines will be implemented: one where the optimization
is sequential and one where it is the equivalent matrix solution. The choice can be made based on considerations of speed
and efficiency.
"""
def __init__(self):
self.ID = identifier
self.version = version
logging.info('Optimizer object initialized: %s' % self.ID)
def setup(self, dims):
self.nlag = dims[0]
self.nmembers = dims[1]
# self.nparams = dims[2]
self.nparams = 22
self.nobs = dims[3]
self.create_matrices()
def create_matrices(self):
""" Create Matrix space needed in optimization routine """
# mean state [X]
self.x = np.zeros((self.nlag * self.nparams,), float)
# deviations from mean state [X']
self.X_prime = np.zeros((self.nlag * self.nparams, self.nmembers,), float)
# mean state, transported to observation space [ H(X) ]
self.Hx = np.zeros((self.nobs,), float)
# deviations from mean state, transported to observation space [ H(X') ]
self.HX_prime = np.zeros((self.nobs, self.nmembers), float)
# observations
self.obs = np.zeros((self.nobs,), float)
# observation ids
self.obs_ids = np.zeros((self.nobs,), float)
# covariance of observations
# Total covariance of fluxes and obs in units of obs [H P H^t + R]
if self.algorithm == 'Serial':
self.R = np.zeros((self.nobs,), float)
self.HPHR = np.zeros((self.nobs,), float)
else:
self.R = np.zeros((self.nobs, self.nobs,), float)
self.HPHR = np.zeros((self.nobs, self.nobs,), float)
# localization of obs
self.may_localize = np.zeros(self.nobs, bool)
# rejection of obs
self.may_reject = np.zeros(self.nobs, bool)
# flags of obs
self.flags = np.zeros(self.nobs, int)
# species type
self.species = np.zeros(self.nobs, str)
# species type
self.sitecode = np.zeros(self.nobs, str)
# species mask
self.speciesmask = {}
# Kalman Gain matrix
#self.KG = np.zeros((self.nlag * self.nparams, self.nobs,), float)
self.KG = np.zeros((self.nlag * self.nparams,), float)
def state_to_matrix(self, statevector):
allsites = [] # collect all obs for n=1,..,nlag
allobs = [] # collect all obs for n=1,..,nlag
allmdm = [] # collect all mdm for n=1,..,nlag
allids = [] # collect all model samples for n=1,..,nlag
allreject = [] # collect all model samples for n=1,..,nlag
alllocalize = [] # collect all model samples for n=1,..,nlag
allflags = [] # collect all model samples for n=1,..,nlag
allspecies = [] # collect all model samples for n=1,..,nlag
allsimulated = [] # collect all members model samples for n=1,..,nlag
for n in range(self.nlag):
samples = statevector.obs_to_assimilate[n]
members = statevector.ensemble_members[n]
self.x[n * self.nparams:(n + 1) * self.nparams] = members[0].param_values
self.X_prime[n * self.nparams:(n + 1) * self.nparams, :] = np.transpose(np.array([m.param_values for m in members]))
if samples != None:
self.rejection_threshold = samples.rejection_threshold
allreject.extend(samples.getvalues('may_reject'))
alllocalize.extend(samples.getvalues('may_localize'))
allflags.extend(samples.getvalues('flag'))
allspecies.extend(samples.getvalues('species'))
allobs.extend(samples.getvalues('obs'))
allsites.extend(samples.getvalues('code'))
allmdm.extend(samples.getvalues('mdm'))
allids.extend(samples.getvalues('id'))
simulatedensemble = samples.getvalues('simulated')
for s in range(simulatedensemble.shape[0]):
allsimulated.append(simulatedensemble[s])
self.obs[:] = np.array(allobs)
self.obs_ids[:] = np.array(allids)
self.HX_prime[:, :] = np.array(allsimulated)
self.Hx[:] = self.HX_prime[:, 0]
self.may_reject[:] = np.array(allreject)
self.may_localize[:] = np.array(alllocalize)
self.flags[:] = np.array(allflags)
self.species[:] = np.array(allspecies)
self.sitecode = allsites
self.X_prime = self.X_prime - self.x[:, np.newaxis] # make into a deviation matrix
self.HX_prime = self.HX_prime - self.Hx[:, np.newaxis] # make a deviation matrix
if self.algorithm == 'Serial':
for i, mdm in enumerate(allmdm):
self.R[i] = mdm ** 2
else:
for i, mdm in enumerate(allmdm):
self.R[i, i] = mdm ** 2
def matrix_to_state(self, statevector):
for n in range(self.nlag):
members = statevector.ensemble_members[n]
for m, mem in enumerate(members):
members[m].param_values[:] = self.X_prime[n * self.nparams:(n + 1) * self.nparams, m] + self.x[n * self.nparams:(n + 1) * self.nparams]
logging.debug('Returning optimized data to the StateVector, setting "StateVector.isOptimized = True" ')
def write_diagnostics(self, filename, type):
"""
Open a NetCDF file and write diagnostic output from optimization process:
- calculated residuals
- model-data mismatches
- HPH^T
- prior ensemble of samples
- posterior ensemble of samples
- prior ensemble of fluxes
- posterior ensemble of fluxes
The type designation refers to the writing of prior or posterior data and is used in naming the variables"
"""
# Open or create file
if type == 'prior':
f = io.CT_CDF(filename, method='create')
logging.debug('Creating new diagnostics file for optimizer (%s)' % filename)
elif type == 'optimized':
f = io.CT_CDF(filename, method='write')
logging.debug('Opening existing diagnostics file for optimizer (%s)' % filename)
# Add dimensions
dimparams = f.add_params_dim(self.nparams)
dimmembers = f.add_members_dim(self.nmembers)
dimlag = f.add_lag_dim(self.nlag, unlimited=False)
dimobs = f.add_obs_dim(self.nobs)
dimstate = f.add_dim('nstate', self.nparams * self.nlag)
dim200char = f.add_dim('string_of200chars', 200)
# Add data, first the ones that are written both before and after the optimization
savedict = io.std_savedict.copy()
savedict['name'] = "statevectormean_%s" % type
savedict['long_name'] = "full_statevector_mean_%s" % type
savedict['units'] = "unitless"
savedict['dims'] = dimstate
savedict['values'] = self.x.tolist()
savedict['comment'] = 'Full %s state vector mean ' % type
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "statevectordeviations_%s" % type
savedict['long_name'] = "full_statevector_deviations_%s" % type
savedict['units'] = "unitless"
savedict['dims'] = dimstate + dimmembers
savedict['values'] = self.X_prime.tolist()
savedict['comment'] = 'Full state vector %s deviations as resulting from the optimizer' % type
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "modelsamplesmean_%s" % type
savedict['long_name'] = "modelsamplesforecastmean_%s" % type
savedict['units'] = "mol mol-1"
savedict['dims'] = dimobs
savedict['values'] = self.Hx.tolist()
savedict['comment'] = '%s mean mole fractions based on %s state vector' % (type, type)
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "modelsamplesdeviations_%s" % type
savedict['long_name'] = "modelsamplesforecastdeviations_%s" % type
savedict['units'] = "mol mol-1"
savedict['dims'] = dimobs + dimmembers
savedict['values'] = self.HX_prime.tolist()
savedict['comment'] = '%s mole fraction deviations based on %s state vector' % (type, type)
f.add_data(savedict)
# Continue with prior only data
if type == 'prior':
savedict = io.std_savedict.copy()
savedict['name'] = "sitecode"
savedict['long_name'] = "site code propagated from observation file"
savedict['dtype'] = "char"
savedict['dims'] = dimobs + dim200char
savedict['values'] = self.sitecode
savedict['missing_value'] = '!'
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "observed"
savedict['long_name'] = "observedvalues"
savedict['units'] = "mol mol-1"
savedict['dims'] = dimobs
savedict['values'] = self.obs.tolist()
savedict['comment'] = 'Observations used in optimization'
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "obspack_num"
savedict['dtype'] = "int64"
savedict['long_name'] = "Unique_ObsPack_observation_number"
savedict['units'] = ""
savedict['dims'] = dimobs
savedict['values'] = self.obs_ids.tolist()
savedict['comment'] = 'Unique observation number across the entire ObsPack distribution'
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "modeldatamismatchvariance"
savedict['long_name'] = "modeldatamismatch variance"
savedict['units'] = "[mol mol-1]^2"
if self.algorithm == 'Serial':
savedict['dims'] = dimobs
else: savedict['dims'] = dimobs + dimobs
savedict['values'] = self.R.tolist()
savedict['comment'] = 'Variance of mole fractions resulting from model-data mismatch'
f.add_data(savedict)
# Continue with posterior only data
elif type == 'optimized':
savedict = io.std_savedict.copy()
savedict['name'] = "totalmolefractionvariance"
savedict['long_name'] = "totalmolefractionvariance"
savedict['units'] = "[mol mol-1]^2"
if self.algorithm == 'Serial':
savedict['dims'] = dimobs
else: savedict['dims'] = dimobs + dimobs
savedict['values'] = self.HPHR.tolist()
savedict['comment'] = 'Variance of mole fractions resulting from prior state and model-data mismatch'
f.add_data(savedict)
savedict = io.std_savedict.copy()
savedict['name'] = "flag"
savedict['long_name'] = "flag_for_obs_model"
savedict['units'] = "None"
savedict['dims'] = dimobs
savedict['values'] = self.flags.tolist()
savedict['comment'] = 'Flag (0/1/2/99) for observation value, 0 means okay, 1 means QC error, 2 means rejected, 99 means not sampled'
f.add_data(savedict)
#savedict = io.std_savedict.copy()
#savedict['name'] = "kalmangainmatrix"
#savedict['long_name'] = "kalmangainmatrix"
#savedict['units'] = "unitless molefraction-1"
#savedict['dims'] = dimstate + dimobs
#savedict['values'] = self.KG.tolist()
#savedict['comment'] = 'Kalman gain matrix of all obs and state vector elements'
#dummy = f.add_data(savedict)
f.close()
logging.debug('Diagnostics file closed')
def serial_minimum_least_squares(self):
""" Make minimum least squares solution by looping over obs"""
for n in range(self.nobs):
# Screen for flagged observations (for instance site not found, or no sample written from model)
if self.flags[n] != 0:
logging.debug('Skipping observation (%s,%i) because of flag value %d' % (self.sitecode[n], self.obs_ids[n], self.flags[n]))
continue
# Screen for outliers greather than 3x model-data mismatch, only apply if obs may be rejected
res = self.obs[n] - self.Hx[n]
if self.may_reject[n]:
threshold = self.rejection_threshold * np.sqrt(self.R[n])
if np.abs(res) > threshold:
logging.debug('Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)' % (self.sitecode[n], self.obs_ids[n], res, threshold))
self.flags[n] = 2
continue
else:
logging.info('Taking observation (%s,%i) as residual (%f) doesnt exceed threshold (%f)' % (self.sitecode[n], self.obs_ids[n], res, threshold))
logging.debug('Proceeding to assimilate observation %s, %i' % (self.sitecode[n], self.obs_ids[n]))
PHt = 1. / (self.nmembers - 1) * np.dot(self.X_prime, self.HX_prime[n, :])
self.HPHR[n] = 1. / (self.nmembers - 1) * (self.HX_prime[n, :] * self.HX_prime[n, :]).sum() + self.R[n]
self.KG[:] = PHt / self.HPHR[n]
if self.may_localize[n]:
logging.debug('Trying to localize observation %s, %i' % (self.sitecode[n], self.obs_ids[n]))
self.localize(n)
else:
logging.debug('Not allowed to localize observation %s, %i' % (self.sitecode[n], self.obs_ids[n]))
alpha = np.double(1.0) / (np.double(1.0) + np.sqrt((self.R[n]) / self.HPHR[n]))
self.x[:] = self.x + self.KG[:] * res
self.x[self.x<0.] = 0. # cut off negative values, COSMO don't like negative fluxes
for r in range(self.nmembers):
self.X_prime[:, r] = self.X_prime[:, r] - alpha * self.KG[:] * (self.HX_prime[n, r])
#WP !!!! Very important to first do all obervations from n=1 through the end, and only then update 1,...,n. The current observation
#WP should always be updated last because it features in the loop of the adjustments !!!!
for m in range(n + 1, self.nobs):
res = self.obs[n] - self.Hx[n]
fac = 1.0 / (self.nmembers - 1) * (self.HX_prime[n, :] * self.HX_prime[m, :]).sum() / self.HPHR[n]
self.Hx[m] = self.Hx[m] + fac * res
self.HX_prime[m, :] = self.HX_prime[m, :] - alpha * fac * self.HX_prime[n, :]
for m in range(1, n + 1):
res = self.obs[n] - self.Hx[n]
fac = 1.0 / (self.nmembers - 1) * (self.HX_prime[n, :] * self.HX_prime[m, :]).sum() / self.HPHR[n]
self.Hx[m] = self.Hx[m] + fac * res
self.HX_prime[m, :] = self.HX_prime[m, :] - alpha * fac * self.HX_prime[n, :]
def bulk_minimum_least_squares(self):
""" Make minimum least squares solution by solving matrix equations"""
# Create full solution, first calculate the mean of the posterior analysis
HPH = np.dot(self.HX_prime, np.transpose(self.HX_prime)) / (self.nmembers - 1) # HPH = 1/N * HX' * (HX')^T
self.HPHR[:, :] = HPH + self.R # HPHR = HPH + R
HPb = np.dot(self.X_prime, np.transpose(self.HX_prime)) / (self.nmembers - 1) # HP = 1/N X' * (HX')^T
self.KG[:, :] = np.dot(HPb, la.inv(self.HPHR)) # K = HP/(HPH+R)
for n in range(self.nobs):
self.localize(n)
self.x[:] = self.x + np.dot(self.KG, self.obs - self.Hx) # xa = xp + K (y-Hx)
# And next make the updated ensemble deviations. Note that we calculate P by using the full equation (10) at once, and
# not in a serial update fashion as described in Whitaker and Hamill.
# For the current problem with limited N_obs this is easier, or at least more straightforward to do.
I = np.identity(self.nlag * self.nparams)
sHPHR = la.cholesky(self.HPHR) # square root of HPH+R
part1 = np.dot(HPb, np.transpose(la.inv(sHPHR))) # HP(sqrt(HPH+R))^-1
part2 = la.inv(sHPHR + np.sqrt(self.R)) # (sqrt(HPH+R)+sqrt(R))^-1
Kw = np.dot(part1, part2) # K~
self.X_prime[:, :] = np.dot(I, self.X_prime) - np.dot(Kw, self.HX_prime) # HX' = I - K~ * HX'
# Now do the adjustments of the modeled mole fractions using the linearized ensemble. These are not strictly needed but can be used
# for diagnosis.
part3 = np.dot(HPH, np.transpose(la.inv(sHPHR))) # HPH(sqrt(HPH+R))^-1
Kw = np.dot(part3, part2) # K~
self.Hx[:] = self.Hx + np.dot(np.dot(HPH, la.inv(self.HPHR)), self.obs - self.Hx) # Hx = Hx+ HPH/HPH+R (y-Hx)
self.HX_prime[:, :] = self.HX_prime - np.dot(Kw, self.HX_prime) # HX' = HX'- K~ * HX'
logging.info('Minimum Least Squares solution was calculated, returning')
def set_localization(self):
""" determine which localization to use """
self.localization = True
self.localizetype = "None"
logging.info("Current localization option is set to %s" % self.localizetype)
def localize(self, n):
""" localize the Kalman Gain matrix """
logging.debug('Not localized observation %s, %i' % (self.sitecode[n], self.obs_ids[n]))
def set_algorithm(self):
self.algorithm = 'Serial'
logging.info("Current algorithm is set to %s in baseclass optimizer" % self.algorithm)
################### End Class Optimizer ###################
if __name__ == "__main__":
pass
"""CarbonTracker Data Assimilation Shell (CTDAS) Copyright (C) 2017 Wouter Peters.
Users are recommended to contact the developers (wouter.peters@wur.nl) to receive
updates of the code. See also: http://www.carbontracker.eu.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
version 3. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>."""
#!/usr/bin/env python
# optimizer.py
"""
Author : peters
Revision History:
File created on 28 Jul 2010.
"""
import os
import sys
import logging
sys.path.append(os.getcwd())
from da.cosmo.base_optimizer import Optimizer
identifier = 'Ensemble Square Root Filter'
version = '0.0'
################### Begin Class CO2Optimizer ###################
class CO2Optimizer(Optimizer):
"""
This creates an instance of a CarbonTracker optimization object. The base class it derives from is the optimizer object.
Additionally, this CO2Optimizer implements a special localization option following the CT2007 method.
All other methods are inherited from the base class Optimizer.
"""
def set_localization(self, loctype='None'):
""" determine which localization to use """
if loctype == 'CT2007':
self.localization = True
self.localizetype = 'CT2007'
#T-test values for two-tailed student's T-test using 95% confidence interval for some options of nmembers
if self.nmembers == 50:
self.tvalue = 2.0086
elif self.nmembers == 100:
self.tvalue = 1.9840
elif self.nmembers == 150:
self.tvalue = 1.97591
elif self.nmembers == 200:
self.tvalue = 1.9719
else: self.tvalue = 0
else:
self.localization = False
self.localizetype = 'None'
logging.info("Current localization option is set to %s" % self.localizetype)
if self.localization == True:
if self.tvalue == 0:
logging.error("Critical tvalue for localization not set for %i ensemble members"%(self.nmembers))
sys.exit(2)
else: logging.info("Used critical tvalue %0.05f is based on 95%% probability and %i ensemble members in a two-tailed student's T-test"%(self.tvalue,self.nmembers))
def localize(self, n):
""" localize the Kalman Gain matrix """
import numpy as np
if not self.localization:
logging.debug('Not localized observation %i' % self.obs_ids[n])
return
if self.localizetype == 'CT2007':
count_localized = 0
for r in range(self.nlag * self.nparams):
corr = np.corrcoef(self.HX_prime[n, :], self.X_prime[r, :].squeeze())[0, 1]
prob = corr / np.sqrt((1.000000001 - corr ** 2) / (self.nmembers - 2))
if abs(prob) < self.tvalue:
self.KG[r] = 0.0
count_localized = count_localized + 1
logging.debug('Localized observation %i, %i%% of values set to 0' % (self.obs_ids[n],count_localized*100/(self.nlag * self.nparams)))
def set_algorithm(self, algorithm='Serial'):
""" determine which minimum least squares algorithm to use """
if algorithm == 'Serial':
self.algorithm = 'Serial'
else:
self.algorithm = 'Bulk'
logging.info("Current minimum least squares algorithm is set to %s" % self.algorithm)
################### End Class CO2Optimizer ###################
if __name__ == "__main__":
pass
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment