Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
NearRealTimeCTDAS
CTDAS
Commits
3cd252b1
Commit
3cd252b1
authored
Dec 10, 2018
by
brunner
Browse files
No commit message
No commit message
parent
f4f719af
Changes
2
Hide whitespace changes
Inline
Side-by-side
da/cosmo/statevector.py
→
da/cosmo/
base_
statevector.py
View file @
3cd252b1
...
...
@@ -251,8 +251,8 @@ class StateVector(object):
"""
if
covariancematrix
==
None
:
covariancematrix
=
np
.
identity
(
self
.
nparams
)
#
if covariancematrix == None:
#
covariancematrix = np.identity(self.nparams)
# Make a cholesky decomposition of the covariance matrix
...
...
@@ -273,7 +273,6 @@ class StateVector(object):
newmean
=
np
.
ones
(
self
.
nparams
,
float
)
# standard value for a new time step is 1.0
# If this is not the start of the filter, average previous two optimized steps into the mix
if
lag
==
self
.
nlag
-
1
and
self
.
nlag
>=
3
:
newmean
+=
self
.
ensemble_members
[
lag
-
1
][
0
].
param_values
+
\
self
.
ensemble_members
[
lag
-
2
][
0
].
param_values
...
...
@@ -291,17 +290,18 @@ class StateVector(object):
rands
=
np
.
random
.
uniform
(
low
=-
1.
,
high
=
1.
,
size
=
self
.
nparams
)
# rands = np.random.randn(self.nparams)
# rands = np.clip(rands,-1,1)
#
if (member==1):
#
rands = np.array([1.836451,1.91572,1.719371,1.947495,1.788597,1.109507,0.9401712,2,0.003201536,1.2276,0])-1.
#
elif (member==2):
#
rands = np.array([2,0.04773442,1.809479,1.136452,2,0.8753765,1.488298,2,1.908293,0.02784704,0])-1.
#
elif (member==3):
#
rands = np.array([0.9136019,1.386204,2,0.1250395,1.815127,2,0.3002012,1.666945,0,0,0])-1.
if
(
member
==
1
):
rands
=
np
.
array
([
1.836451
,
1.91572
,
1.719371
,
1.947495
,
1.788597
,
1.109507
,
0.9401712
,
2
,
0.003201536
,
1.2276
,
0
])
-
1.
elif
(
member
==
2
):
rands
=
np
.
array
([
2
,
0.04773442
,
1.809479
,
1.136452
,
2
,
0.8753765
,
1.488298
,
2
,
1.908293
,
0.02784704
,
0
])
-
1.
elif
(
member
==
3
):
rands
=
np
.
array
([
0.9136019
,
1.386204
,
2
,
0.1250395
,
1.815127
,
2
,
0.3002012
,
1.666945
,
0
,
0
,
0
])
-
1.
newmember
=
EnsembleMember
(
member
)
newmember
.
param_values
=
np
.
dot
(
C
,
rands
)
+
newmean
newmember
.
param_values
[
-
1
]
=
0
self
.
ensemble_members
[
lag
].
append
(
newmember
)
newmember
.
param_values
[
newmember
.
param_values
<
0.
]
=
0.
logging
.
debug
(
'%d new ensemble members were added to the state vector # %d'
%
(
self
.
nmembers
,
(
lag
+
1
)))
...
...
@@ -452,7 +452,7 @@ class StateVector(object):
members
=
self
.
ensemble_members
[
lag
]
for
mem
in
members
:
filename
=
os
.
path
.
join
(
outdir
,
'parameters.%03d%s'
%
(
mem
.
membernumber
,
endswith
))
filename
=
os
.
path
.
join
(
outdir
,
'parameters
_'
+
str
(
lag
)
+
'
.%03d%s'
%
(
mem
.
membernumber
,
endswith
))
ncf
=
io
.
CT_CDF
(
filename
,
method
=
'create'
)
dimparams
=
ncf
.
add_params_dim
(
self
.
nparams
)
dimgrid
=
ncf
.
add_latlon_dim
()
...
...
da/cosmo/covariances.py
0 → 100755
View file @
3cd252b1
"""CarbonTracker Data Assimilation Shell (CTDAS) Copyright (C) 2017 Wouter Peters.
Users are recommended to contact the developers (wouter.peters@wur.nl) to receive
updates of the code. See also: http://www.carbontracker.eu.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
version 3. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>."""
#!/usr/bin/env python
# ct_statevector_tools.py
"""
Author : peters
Revision History:
File created on 28 Jul 2010.
"""
import
os
import
sys
sys
.
path
.
append
(
os
.
getcwd
())
import
logging
import
numpy
as
np
from
da.cosmo.base_statevector
import
StateVector
,
EnsembleMember
import
da.tools.io4
as
io
identifier
=
'CarbonTracker Statevector '
version
=
'0.0'
################### Begin Class CO2StateVector ###################
class
CO2StateVector
(
StateVector
):
""" This is a StateVector object for CarbonTracker. It has a private method to make new ensemble members """
def
get_covariance
(
self
,
date
,
dacycle
):
""" Make a new ensemble from specified matrices, the attribute lag refers to the position in the state vector.
Note that lag=1 means an index of 0 in python, hence the notation lag-1 in the indexing below.
The argument is thus referring to the lagged state vector as [1,2,3,4,5,..., nlag]
0. Needleleaf Evergreen, Temperate
1. Needleleaf Evergreen, Boreal
2. Boradleaf Decidous, Temperate
3. Boradleaf Decidous, Boreal
4. Boradleaf Decidous Shrub, Temperate
5. Boradleaf Decidous Shrub, Boreal
6. C3 Arctic Grass
7. C3 non-Arctic Grass
8. C4 Grass
9. Crop
10. None
"""
fullcov
=
np
.
array
([
\
(
1.00
,
0.36
,
0.16
,
0.16
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.36
,
1.00
,
0.16
,
0.16
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.16
,
0.16
,
1.00
,
0.36
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.16
,
0.16
,
0.36
,
1.00
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.16
,
0.16
,
0.16
,
0.16
,
1.00
,
0.36
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.16
,
0.16
,
0.16
,
0.16
,
0.36
,
1.00
,
0.04
,
0.04
,
0.04
,
0.01
,
0.00
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
1.00
,
0.16
,
0.16
,
0.16
,
0.00
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.16
,
1.00
,
0.16
,
0.16
,
0.00
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.16
,
0.16
,
1.00
,
0.16
,
0.00
),
\
(
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.16
,
0.16
,
0.16
,
1.00
,
0.00
),
\
(
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
0.00
,
1.e-10
)
])
return
fullcov
def
read_from_legacy_file
(
self
,
filename
,
qual
=
'opt'
):
"""
:param filename: the full filename for the input NetCDF file
:param qual: a string indicating whether to read the 'prior' or 'opt'(imized) StateVector from file
:rtype: None
Read the StateVector information from a NetCDF file and put in a StateVector object
In principle the input file will have only one four datasets inside
called:
* `meanstate_prior`, dimensions [nlag, nparamaters]
* `ensemblestate_prior`, dimensions [nlag,nmembers, nparameters]
* `meanstate_opt`, dimensions [nlag, nparamaters]
* `ensemblestate_opt`, dimensions [nlag,nmembers, nparameters]
This NetCDF information can be written to file using
:meth:`~da.baseclasses.statevector.StateVector.write_to_file`
"""
f
=
io
.
ct_read
(
filename
,
'read'
)
for
n
in
range
(
self
.
nlag
):
if
qual
==
'opt'
:
meanstate
=
f
.
get_variable
(
'statevectormean_opt'
)
EnsembleMembers
=
f
.
get_variable
(
'statevectorensemble_opt'
)
elif
qual
==
'prior'
:
meanstate
=
f
.
get_variable
(
'statevectormean_prior'
)
EnsembleMembers
=
f
.
get_variable
(
'statevectorensemble_prior'
)
if
not
self
.
ensemble_members
[
n
]
==
[]:
self
.
ensemble_members
[
n
]
=
[]
logging
.
warning
(
'Existing ensemble for lag=%d was removed to make place for newly read data'
%
(
n
+
1
))
for
m
in
range
(
self
.
nmembers
):
newmember
=
EnsembleMember
(
m
)
newmember
.
param_values
=
EnsembleMembers
[
m
,
:].
flatten
()
+
meanstate
# add the mean to the deviations to hold the full parameter values
self
.
ensemble_members
[
n
].
append
(
newmember
)
f
.
close
()
logging
.
info
(
'Successfully read the State Vector from file (%s) '
%
filename
)
def
read_from_file_exceptsam
(
self
,
filename
,
qual
=
'opt'
):
"""
:param filename: the full filename for the input NetCDF file
:param qual: a string indicating whether to read the 'prior' or 'opt'(imized) StateVector from file
:rtype: None
Read the StateVector information from a NetCDF file and put in a StateVector object
In principle the input file will have only one four datasets inside
called:
* `meanstate_prior`, dimensions [nlag, nparamaters]
* `ensemblestate_prior`, dimensions [nlag,nmembers, nparameters]
* `meanstate_opt`, dimensions [nlag, nparamaters]
* `ensemblestate_opt`, dimensions [nlag,nmembers, nparameters]
This NetCDF information can be written to file using
:meth:`~da.baseclasses.statevector.StateVector.write_to_file`
"""
f
=
io
.
ct_read
(
filename
,
'read'
)
meanstate
=
f
.
get_variable
(
'statevectormean_'
+
qual
)
# meanstate[:,39:77] = 1
ensmembers
=
f
.
get_variable
(
'statevectorensemble_'
+
qual
)
f
.
close
()
for
n
in
range
(
self
.
nlag
):
if
not
self
.
ensemble_members
[
n
]
==
[]:
self
.
ensemble_members
[
n
]
=
[]
logging
.
warning
(
'Existing ensemble for lag=%d was removed to make place for newly read data'
%
(
n
+
1
))
for
m
in
range
(
self
.
nmembers
):
newmember
=
EnsembleMember
(
m
)
newmember
.
param_values
=
ensmembers
[
n
,
m
,
:].
flatten
()
+
meanstate
[
n
]
# add the mean to the deviations to hold the full parameter values
self
.
ensemble_members
[
n
].
append
(
newmember
)
logging
.
info
(
'Successfully read the State Vector from file (%s) '
%
filename
)
# logging.info('State Vector set to 1 for South American regions')
################### End Class CO2StateVector ###################
if
__name__
==
"__main__"
:
pass
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment