Skip to content
Snippets Groups Projects
Commit 262b4c9c authored by brunner's avatar brunner
Browse files

No commit message

No commit message
parent 9c2e8960
No related branches found
No related tags found
No related merge requests found
......@@ -55,8 +55,8 @@ class ObservationOperator(object):
self.simulated_file = os.path.join(self.outputdir, 'samples_simulated.%s.nc' % self.dacycle['time.sample.stamp'])
self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])
def run(self,lag,dacycle):
def run(self,lag,dacycle,statevector):
members = statevector.ensemble_members[lag]
absolute_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y-%m-%d'))
starth = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.start']).days)*24
endh = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.finish']).days)*24
......@@ -126,11 +126,18 @@ class ObservationOperator(object):
for dt in rrule.rrule(rrule.HOURLY, dtstart=dacycle['time.start']+timedelta(hours=24*lag*int(dacycle['time.cycle'])), until=dacycle['time.start']+timedelta(hours=(lag+1)*24*int(dacycle['time.cycle']))):
logging.info('Multiplying emissions with parameters for lag %d, date %s' % (lag, dt.strftime('%Y%m%d%H')))
for ens in range(0,self.forecast_nmembers):
dthh = dt.strftime('%H')
co2_bg=str((members[ens].param_values[-1]))
ens = str(ens).zfill(3)
cdo.setunit("'kg m-2 s-1' -expr,GPP_"+ens+"_F=CO2_GPP_F*parametermap -merge "+os.path.join(dacycle['da.bio.input'], 'gpp_%s.nc' % dt.strftime('%Y%m%d%H')), input = os.path.join(dacycle['restartmap.dir'],"parameters_gpp_lag"+str(lag)+"."+ens+".nc"), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_"+ens+"_%s.nc" % dt.strftime('%Y%m%d%H')))
cdo.setunit("'kg m-2 s-1' -expr,RESP_"+ens+"_F=CO2_RESP_F*parametermap -merge "+os.path.join(dacycle['da.bio.input'], 'ra_%s.nc' % dt.strftime('%Y%m%d%H')), input = os.path.join(dacycle['restartmap.dir'],"parameters_resp_lag"+str(lag)+"."+ens+".nc"), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_"+ens+"_%s.nc" % dt.strftime('%Y%m%d%H')))
if dthh=='00' or dthh=='03' or dthh=='06' or dthh=='09' or dthh=='12' or dthh=='15' or dthh=='18' or dthh=='21':
cdo.setunit("'kg m-2 s-1' -expr,BG_"+ens+"=CO2_BG*"+co2_bg+" -merge "+os.path.join(dacycle['da.bg.input'], 'ct_%s.nc' % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bg.input'], 'ensemble', "ct_"+ens+"_%s.nc" % dt.strftime('%Y%m%d%H')))
cdo.merge(input = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_%s.nc" % dt.strftime('%Y%m%d%H')))
cdo.merge(input = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_%s.nc" % dt.strftime('%Y%m%d%H')))
if dthh=='00' or dthh=='03' or dthh=='06' or dthh=='09' or dthh=='12' or dthh=='15' or dthh=='18' or dthh=='21':
cdo.merge(input = os.path.join(dacycle['da.bg.input'], 'ensemble', "ct_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bg.input'], 'ensemble', "ct_%s.nc" % dt.strftime('%Y%m%d%H')))
os.chdir(dacycle['da.obsoperator.home'])
......@@ -167,9 +174,9 @@ class ObservationOperator(object):
logging.info('ObservationOperator finished successfully, output file written (%s)' % self.simulated_file)
def run_forecast_model(self, lag, dacycle):
def run_forecast_model(self, lag, dacycle, statevector):
self.prepare_run()
self.run(lag, dacycle)
self.run(lag, dacycle, statevector)
def extract_model_data(self,dacycle,hstart,hstop,ensnum):
......@@ -192,7 +199,7 @@ class ObservationOperator(object):
logging.info('Extracting output for ens %s, time %s' % (str(ens),str(dt)))
co2_in_fn = cosmo_out+'lffd'+dt+'.nc'
co2_out_fn = cosmo_out+'CO2_'+ens+'_'+dt+'.nc'
cdo.expr("'CO2=(CO2_BG-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-selname,QV,CO2_BG,GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_fn)
cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_fn)
files2cat.append(co2_out_fn)
cdo.cat(input = files2cat, output = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc")
......
......@@ -336,7 +336,7 @@ def sample_step(dacycle, samples, statevector, obsoperator, lag, advance=False):
# Run the observation operator
obsoperator.run_forecast_model(lag, dacycle)
obsoperator.run_forecast_model(lag, dacycle, statevector)
# Read forecast model samples that were written to NetCDF files by each member. Add them to the exisiting
......
......@@ -150,7 +150,7 @@ class StateVector(object):
self.nlag = int(dacycle['time.nlag'])
self.nmembers = int(dacycle['da.optimizer.nmembers'])
# self.nparams = int(dacycle.dasystem['nparameters'])
self.nparams = 22
self.nparams = 23
self.nobs = 0
self.obs_to_assimilate = () # empty containter to hold observations to assimilate later on
......@@ -182,7 +182,7 @@ class StateVector(object):
# Create a dictionary for state <-> gridded map conversions
nparams = 22
nparams = 23
#nparams = self.gridmap.max()
self.griddict = {}
for r in range(1, 11):
......@@ -267,7 +267,7 @@ class StateVector(object):
except:
s = np.linalg.svd(covariancematrix, full_matrices=1, compute_uv=0) #Cartesius fix
dof = np.sum(s) ** 2 / sum(s ** 2)
# covariancematrix = np.identity(self.nparams) # pavle - for testing, final matrix will be 22x22
# covariancematrix = np.identity(self.nparams) # pavle - for testing, final matrix will be 23x23
C = np.linalg.cholesky(covariancematrix)
logging.debug('Cholesky decomposition has succeeded ')
......@@ -291,9 +291,9 @@ class StateVector(object):
self.ensemble_members[lag].append(newmember)
# Create members 1:nmembers and add to ensemble_members list
for member in range(1, self.nmembers):
rands = np.random.uniform(low=-1., high=1., size=self.nparams)
rands = np.random.uniform(low=-1., high=1., size=self.nparams-1)
rands_bg = np.random.uniform(low=-0.05., high=0.05., size=1)
# if (member==1):
# rands = np.array([1.836451,1.91572,1.719371,1.947495,1.788597,1.109507,0.9401712,2,0.003201536,1.2276,0])-1.
# elif (member==2):
......@@ -303,11 +303,9 @@ class StateVector(object):
newmember = EnsembleMember(member)
# newmember.param_values = np.concatenate([np.dot(C, rands[0:self.nparams/2]),np.dot(C, rands[self.nparams/2:self.nparams])]) + newmean
newmember.param_values = np.concatenate([np.dot(C, rands[0:11]),np.dot(C, rands[11:22])]) + newmean
#newmember.param_values = np.dot(C, rands) + newmean
newmember.param_values = (np.hstack((np.dot(C, rands[0:11]),np.dot(C, rands[11:22]), rands_bg)) + newmean).ravel()
newmember.param_values[10] = 0.
newmember.param_values[21] = 0.
# newmember.param_values[-1] = 0
newmember.param_values[newmember.param_values<0.] = 0.
self.ensemble_members[lag].append(newmember)
......@@ -501,11 +499,12 @@ class StateVector(object):
# GPP
filename_gpp = os.path.join(outdir, 'parameters_gpp_lag'+str(lag)+'.%03d%s' % (mem.membernumber, endswith))
ncf = io.CT_CDF(filename_gpp, method='create')
dimparams = ncf.add_params_dim(self.nparams//2)
#dimparams = ncf.add_params_dim(self.nparams)
dimparams = ncf.add_params_dim(11)
#dimparams = ncf.add_params_dim((self.nparams-1)//2)
dimgrid = ncf.add_latlon_dim()
data = mem.param_values[0:self.nparams//2]
data = mem.param_values[0:11]
#data = mem.param_values[0:(self.nparams-1)//2]
savedict = io.std_savedict.copy()
savedict['name'] = "parametervalues"
......@@ -531,10 +530,12 @@ class StateVector(object):
# RESP
filename_resp = os.path.join(outdir, 'parameters_resp_lag'+str(lag)+'.%03d%s' % (mem.membernumber, endswith))
ncf = io.CT_CDF(filename_resp, method='create')
dimparams = ncf.add_params_dim(self.nparams//2)
dimparams = ncf.add_params_dim(11)
#dimparams = ncf.add_params_dim((self.nparams-1)//2)
dimgrid = ncf.add_latlon_dim()
data = mem.param_values[self.nparams//2:self.nparams]
data = mem.param_values[11:22]
#data = mem.param_values[(self.nparams-1)//2:self.nparams-1]
savedict = io.std_savedict.copy()
savedict['name'] = "parametervalues"
......@@ -558,6 +559,38 @@ class StateVector(object):
ncf.close()
# BACKGROUND CO2
# filename_bg = os.path.join(outdir, 'parameters_bg_lag'+str(lag)+'.%03d%s' % (mem.membernumber, endswith))
# ncf = io.CT_CDF(filename_bg, method='create')
# dimparams = ncf.add_params_dim(11)
# dimgrid = ncf.add_latlon_dim()
#
# data = mem.param_values[-1]
# data = np.hstack((data, data, data, data, data, data, data, data, data, data, data)).ravel()
#
# savedict = io.std_savedict.copy()
# savedict['name'] = "parametervalues"
# savedict['long_name'] = "parameter_values_for_member_%d" % mem.membernumber
# savedict['units'] = "unitless"
# savedict['dims'] = dimparams
# savedict['values'] = data
# savedict['comment'] = 'These are parameter values to use for member %d' % mem.membernumber
# ncf.add_data(savedict)
#
# griddata = self.vector2grid(vectordata=data)
#
# savedict = io.std_savedict.copy()
# savedict['name'] = "parametermap"
# savedict['long_name'] = "parametermap_for_member_%d" % mem.membernumber
# savedict['units'] = "unitless"
# savedict['dims'] = dimgrid
# savedict['values'] = griddata.tolist()
# savedict['comment'] = 'These are gridded parameter values to use for member %d' % mem.membernumber
# ncf.add_data(savedict)
#
# ncf.close()
#
#
def grid2vector(self, griddata=None, method='avg'):
# not used --pavle
"""
......
......@@ -29,19 +29,19 @@
! The time for which to start and end the data assimilation experiment in format YYYY-MM-DD HH:MM:SS
! the following 3 lines are for initial start
!time.start : 2013-04-01 00:00:00
!time.finish : 2013-04-07 23:00:00
!time.end : 2013-04-07 23:00:00
time.start : 2013-04-01 00:00:00
time.finish : 2013-04-07 23:00:00
time.end : 2013-04-07 23:00:00
time.start : 2013-04-08 00:00:00
time.finish : 2013-04-14 23:00:00
time.end : 2013-04-14 23:00:00
!time.start : 2013-04-08 00:00:00
!time.finish : 2013-04-14 23:00:00
!time.end : 2013-04-14 23:00:00
abs.time.start : 2013-04-01 00:00:00
! Whether to restart the CTDAS system from a previous cycle, or to start the sequence fresh. Valid entries are T/F/True/False/TRUE/FALSE
time.restart : T
time.restart : F
da.restart.tstamp : 2013-04-01 00:00:00
! The length of a cycle is given in days, such that the integer 7 denotes the typically used weekly cycle. Valid entries are integers > 1
......@@ -104,6 +104,7 @@ da.obsoperator : cosmo
da.obsoperator.home : /store/empa/em05/parsenov/cosmo_processing_chain
da.bio.input : /store/empa/em05/parsenov/cosmo_input/vprm/processed
da.bg.input : /store/empa/em05/parsenov/cosmo_input/icbc/processed
da.obsoperator.rc : ${da.obsoperator.home}/tm5-ctdas-ei-zoom.rc
!forward.savestate.exceptsam : TRUE
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment