Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Lannoy, Carlos de
baseLess
Commits
055b870b
Commit
055b870b
authored
Apr 11, 2022
by
Lannoy, Carlos de
Browse files
add script for conversion h5 to trt
parent
b359af78
Changes
1
Hide whitespace changes
Inline
Side-by-side
inference/tf2trt.py
0 → 100644
View file @
055b870b
import
argparse
,
re
,
h5py
from
tempfile
import
TemporaryDirectory
import
tensorflow
as
tf
from
tensorflow
import
keras
from
tensorflow.python.compiler.tensorrt
import
trt_convert
as
trt
from
tensorflow.python.saved_model
import
tag_constants
parser
=
argparse
.
ArgumentParser
(
description
=
'Convert baseLess h5 model to trt model for efficiency'
)
parser
.
add_argument
(
'--model'
,
type
=
str
,
required
=
True
,
help
=
'h5-format input model'
)
parser
.
add_argument
(
'--fp-precision'
,
type
=
int
,
choices
=
[
16
,
32
],
default
=
32
,
# todo: 8 bit
help
=
'Floating point precision for output model: 16 or 32 bit [default: 32]'
)
parser
.
add_argument
(
'--mem'
,
type
=
str
,
default
=
'512MB'
,
help
=
'Max RAM to use during inference, define MB or GB [default: 512MB]'
)
parser
.
add_argument
(
'--out-model'
,
type
=
str
,
required
=
True
)
args
=
parser
.
parse_args
()
# --- parameter parsing ---
out_model
=
args
.
out_model
if
out_model
.
endswith
(
'/'
):
out_model
=
out_model
[:
-
1
]
mem_int
=
int
(
re
.
search
(
'^[0-9]+'
,
args
.
mem
).
group
(
0
))
if
'MB'
in
args
.
mem
:
mem_int
*=
int
(
1e6
)
elif
'GB'
in
args
.
mem
:
mem_int
*=
int
(
1e9
)
else
:
raise
ValueError
(
'Define mem in GB or MB'
)
if
args
.
fp_precision
==
32
:
pm
=
trt
.
TrtPrecisionMode
.
FP32
elif
args
.
fp_precision
==
16
:
pm
=
trt
.
TrtPrecisionMode
.
FP16
else
:
raise
ValueError
(
'Precision must be 16 or 32'
)
conversion_params
=
trt
.
DEFAULT_TRT_CONVERSION_PARAMS
.
_replace
(
precision_mode
=
pm
,
max_workspace_size_bytes
=
mem_int
)
# --- load and convert model ---
mod
=
tf
.
keras
.
models
.
load_model
(
args
.
model
)
with
TemporaryDirectory
()
as
td
:
mod
.
save
(
td
)
converter
=
trt
.
TrtGraphConverterV2
(
input_saved_model_dir
=
td
,
conversion_params
=
conversion_params
)
converter
.
convert
()
converter
.
save
(
output_saved_model_dir
=
args
.
out_model
)
# --- add custom parameters as a txt file ---
with
h5py
.
File
(
args
.
model
,
'r'
)
as
fh
:
model_type
=
fh
.
attrs
[
'model_type'
]
kmer_list
=
fh
.
attrs
[
'kmer_list'
]
with
open
(
f
'
{
out_model
}
/baseless_params.txt'
,
'w'
)
as
fh
:
fh
.
write
(
f
'
{
model_type
}
\n
{
kmer_list
}
'
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment