Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
U
uwb_analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Adriaens, Ines
uwb_analysis
Commits
fdd749e3
Commit
fdd749e3
authored
3 years ago
by
Adriaens, Ines
Browse files
Options
Downloads
Patches
Plain Diff
visualise and select subset
parent
fec12702
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
F2_cpsingle.m
+162
-0
162 additions, 0 deletions
F2_cpsingle.m
S10_penalty_postprocess.asv
+22
-2
22 additions, 2 deletions
S10_penalty_postprocess.asv
S10_penalty_postprocess.m
+47
-4
47 additions, 4 deletions
S10_penalty_postprocess.m
with
231 additions
and
6 deletions
F2_cpsingle.m
0 → 100644
+
162
−
0
View file @
fdd749e3
function
[
icp
,
residue
]
=
F2_cpsingle
(
y
,
statistic
,
Lmin
)
%CPSINGLE single best changepoint between two equal distributions
% This file is for internal use only and may be removed in a future
% release.
%
% References:
% * Tony F. Chan, Gene H. Golub, Randall J. LeVeque, Algorithms for
% computing the sample variance: analysis and recommendations" The
% American Statistician. Vol 37, No. 3 (Aug., 1983) pp. 242-247.
% * Philippe Pierre Pebay. "Formulas for robust one-pass parallel
% computation of covariances and arbitrary-order statistical moments."
% SAND2008-6212. 2008. Published through SciTech Connect.
% Copyright 2015-2017 The MathWorks, Inc.
% farm out to correct algorithm
if
strcmp
(
statistic
,
'mean'
)
[
fwd
,
rev
]
=
meanResidual
(
y
);
elseif
strcmp
(
statistic
,
'rms'
)
[
fwd
,
rev
]
=
rmsResidual
(
y
);
elseif
strcmp
(
statistic
,
'std'
)
[
fwd
,
rev
]
=
stdResidual
(
y
);
elseif
strcmp
(
statistic
,
'linear'
)
[
fwd
,
rev
]
=
linearResidual
(
y
);
end
[
residue
,
icp
]
=
min
(
fwd
(
Lmin
:
end
-
Lmin
)
+
rev
(
Lmin
+
1
:
end
-
Lmin
+
1
));
icp
=
icp
+
Lmin
;
% ------------------------------------------------------------------------
function
[
fwd
,
rev
]
=
meanResidual
(
y
)
m
=
size
(
y
,
1
);
n
=
size
(
y
,
2
);
fwd
=
zeros
(
1
,
n
,
'like'
,
y
);
rev
=
zeros
(
1
,
n
,
'like'
,
y
);
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
1
:
n
ydelta
=
y
(:,
ix
)
-
ymean
;
npoints
=
ix
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
Syy
=
Syy
+
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
fwd
(
ix
)
=
sum
(
Syy
);
end
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
n
:
-
1
:
1
ydelta
=
y
(:,
ix
)
-
ymean
;
npoints
=
n
-
ix
+
1
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
Syy
=
Syy
+
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
rev
(
ix
)
=
sum
(
Syy
);
end
% ------------------------------------------------------------------------
function
[
fwd
,
rev
]
=
rmsResidual
(
y
)
m
=
size
(
y
,
1
);
n
=
size
(
y
,
2
);
fwd
=
zeros
(
1
,
n
,
'like'
,
y
);
rev
=
zeros
(
1
,
n
,
'like'
,
y
);
logrealmin
=
repmat
(
log
(
realmin
),
m
,
1
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
1
:
n
npoints
=
ix
;
Syy
=
Syy
+
y
(:,
ix
)
.^
2
;
fwd
(
ix
)
=
npoints
*
sum
(
max
(
logrealmin
-
log
(
npoints
),
log
(
Syy
.
/
npoints
)));
end
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
n
:
-
1
:
1
npoints
=
n
+
1
-
ix
;
Syy
=
Syy
+
y
(:,
ix
)
.^
2
;
rev
(
ix
)
=
npoints
*
sum
(
max
(
logrealmin
-
log
(
npoints
),
log
(
Syy
.
/
npoints
)));
end
% ------------------------------------------------------------------------
function
[
fwd
,
rev
]
=
stdResidual
(
y
)
m
=
size
(
y
,
1
);
n
=
size
(
y
,
2
);
fwd
=
zeros
(
1
,
n
);
rev
=
zeros
(
1
,
n
);
logrealmin
=
repmat
(
log
(
realmin
),
m
,
1
);
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
1
:
n
npoints
=
ix
;
ydelta
=
y
(:,
ix
)
-
ymean
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
Syy
=
Syy
+
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
fwd
(
ix
)
=
npoints
*
sum
(
max
(
logrealmin
-
log
(
npoints
),
log
(
Syy
.
/
npoints
)));
end
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
n
:
-
1
:
1
ydelta
=
y
(:,
ix
)
-
ymean
;
npoints
=
n
+
1
-
ix
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
Syy
=
Syy
+
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
rev
(
ix
)
=
npoints
*
sum
(
max
(
logrealmin
-
log
(
npoints
),
log
(
Syy
.
/
npoints
)));
end
% ------------------------------------------------------------------------
function
[
fwd
,
rev
]
=
linearResidual
(
y
)
m
=
size
(
y
,
1
);
n
=
size
(
y
,
2
);
fwd
=
zeros
(
1
,
n
,
'like'
,
y
);
rev
=
zeros
(
1
,
n
,
'like'
,
y
);
xmean
=
zeros
(
m
,
1
,
'like'
,
y
);
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Sxx
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
Sxy
=
zeros
(
m
,
1
,
'like'
,
y
);
SxxSSE
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
1
:
n
npoints
=
ix
;
ydelta
=
y
(:,
ix
)
-
ymean
;
xdelta
=
ix
-
xmean
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
xmean
=
xmean
+
xdelta
.
/
npoints
;
dSyy
=
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
dSxx
=
xdelta
.*
(
ix
-
xmean
);
dSxy
=
xdelta
.*
ydelta
.*
(
npoints
-
1
)
.
/
npoints
;
Syy
=
Syy
+
dSyy
;
dSxxSSE
=
dSxx
.*
Syy
+
dSyy
.*
Sxx
-
dSxy
.*
(
2
*
Sxy
+
dSxy
);
Sxx
=
Sxx
+
dSxx
;
Sxy
=
Sxy
+
dSxy
;
SxxSSE
=
SxxSSE
+
dSxxSSE
;
fwd
(
ix
)
=
sum
(
SxxSSE
.
/
Sxx
);
end
xmean
=
zeros
(
m
,
1
,
'like'
,
y
);
ymean
=
zeros
(
m
,
1
,
'like'
,
y
);
Sxx
=
zeros
(
m
,
1
,
'like'
,
y
);
Syy
=
zeros
(
m
,
1
,
'like'
,
y
);
Sxy
=
zeros
(
m
,
1
,
'like'
,
y
);
SxxSSE
=
zeros
(
m
,
1
,
'like'
,
y
);
for
ix
=
n
:
-
1
:
1
npoints
=
n
+
1
-
ix
;
ydelta
=
y
(:,
ix
)
-
ymean
;
xdelta
=
ix
-
xmean
;
ymean
=
ymean
+
ydelta
.
/
npoints
;
xmean
=
xmean
+
xdelta
.
/
npoints
;
dSyy
=
ydelta
.*
(
y
(:,
ix
)
-
ymean
);
dSxx
=
xdelta
.*
(
ix
-
xmean
);
dSxy
=
xdelta
.*
ydelta
.*
(
npoints
-
1
)
.
/
npoints
;
Syy
=
Syy
+
dSyy
;
dSxxSSE
=
dSxx
.*
Syy
+
dSyy
.*
Sxx
-
dSxy
.*
(
2
*
Sxy
+
dSxy
);
Sxx
=
Sxx
+
dSxx
;
Sxy
=
Sxy
+
dSxy
;
SxxSSE
=
SxxSSE
+
dSxxSSE
;
rev
(
ix
)
=
sum
(
SxxSSE
.
/
Sxx
);
end
This diff is collapsed.
Click to expand it.
S10_penalty_postprocess.asv
+
22
−
2
View file @
fdd749e3
...
@@ -132,6 +132,8 @@ for i = 1:length(fields_)
...
@@ -132,6 +132,8 @@ for i = 1:length(fields_)
end
end
clear ans days endb field_ i randindx start selday
% plot both time series
% plot both time series
for i = 1:length(fields_)
for i = 1:length(fields_)
...
@@ -156,13 +158,31 @@ for i = 1:length(fields_)
...
@@ -156,13 +158,31 @@ for i = 1:length(fields_)
end
end
% summarize and calculate the metrics of the CP analysis
% summarize and calculate the metrics of the CP analysis
% for "mean" ==> residue = n*sum(var(x,1,2))
% for "mean" ==> residue = n*sum(var(x,1,2))
;
% for "std" ==> residue = sum(n*log(var(x,1,2)));
% for "std" ==> residue = sum(n*log(var(x,1,2)));
% for "rms" ==> residue = sum(n*log(sum(x.^2,2)/n));
% for "rms" ==> residue = sum(n*log(sum(x.^2,2)/n));
% calculate residu when only one CP
% calculate residu when only one CP
%
%
cpsums = table(fields_,'VariableNames','cows');
cpsums = table((1:length(fields_))','VariableNames',{'No'});
for i = 1:height(cpsums)
% cowid
cpsums.cow(i,:) = seldata.(fields_{i}).object_name(1);
% residus for each of the stats - Z data
z = seldata.(fields_{i}).avg_z_sm(~isnan(seldata.(fields_{i}).avg_z_sm))';
p = seldata.(fields_{i}).numtime(~isnan(seldata.(fields_{i}).avg_z_sm))';
n = length(z);
cpsums.n(i) = n;
cpsums.ZmeanR(i) = n*sum(var(z,1,2));
cpsums.ZstdR(i) = sum(n*log(var(z,1,2)));
cpsums.ZrmsR(i) = sum(n*log(sum(z.^2,2)/n));
% residus for each of the stats with one CP - Z data
[icp,residu] = F2_cpsingle(z,'mean',300)
end
...
...
This diff is collapsed.
Click to expand it.
S10_penalty_postprocess.m
+
47
−
4
View file @
fdd749e3
...
@@ -132,12 +132,15 @@ for i = 1:length(fields_)
...
@@ -132,12 +132,15 @@ for i = 1:length(fields_)
end
end
clear
ans
days
endb
field_
i
randindx
start
selday
% plot both time series
% plot both time series
close
all
for
i
=
1
:
length
(
fields_
)
for
i
=
1
:
length
(
fields_
)
% figure;
% figure;
figure
(
'Units'
,
'centimeters'
,
'OuterPosition'
,[
1
1
28
20
]);
figure
(
'Units'
,
'centimeters'
,
'OuterPosition'
,[
1
1
28
20
]);
subplot
(
2
,
1
,
1
);
hold
on
;
box
on
;
title
(
'
Z position'
);
subplot
(
2
,
1
,
1
);
hold
on
;
box
on
;
title
(
[
fields_
{
i
}
',
Z position'
]
);
xlabel
(
'day [h]'
);
ylabel
(
'Z-position [m]'
)
xlabel
(
'day [h]'
);
ylabel
(
'Z-position [m]'
)
plot
(
seldata
.
(
fields_
{
i
})
.
numtime
-
min
(
seldata
.
(
fields_
{
i
})
.
numtime
),
...
plot
(
seldata
.
(
fields_
{
i
})
.
numtime
-
min
(
seldata
.
(
fields_
{
i
})
.
numtime
),
...
seldata
.
(
fields_
{
i
})
.
avg_z_sm
,
'Color'
,[
178
/
255
34
/
255
34
/
255
],
...
seldata
.
(
fields_
{
i
})
.
avg_z_sm
,
'Color'
,[
178
/
255
34
/
255
34
/
255
],
...
...
@@ -156,16 +159,56 @@ for i = 1:length(fields_)
...
@@ -156,16 +159,56 @@ for i = 1:length(fields_)
end
end
% summarize and calculate the metrics of the CP analysis
% summarize and calculate the metrics of the CP analysis
% for "mean" ==> residue = n*sum(var(x,1,2))
% for "mean" ==> residue = n*sum(var(x,1,2))
;
% for "std" ==> residue = sum(n*log(var(x,1,2)));
% for "std" ==> residue = sum(n*log(var(x,1,2)));
% for "rms" ==> residue = sum(n*log(sum(x.^2,2)/n));
% for "rms" ==> residue = sum(n*log(sum(x.^2,2)/n));
% calculate residu when only one CP
% calculate residu when only one CP
%
%
cpsums
=
table
(
fields_
,
'VariableNames'
,
'cows'
);
cpsums
=
table
((
1
:
length
(
fields_
))
','
VariableNames
',{'
No
'
});
for
i
=
1
:
height
(
cpsums
)
% cowid
cpsums
.
cow
(
i
,:)
=
seldata
.
(
fields_
{
i
})
.
object_name
(
1
);
% residus for each of the stats - Z data
z
=
seldata
.
(
fields_
{
i
})
.
avg_z_sm
(
~
isnan
(
seldata
.
(
fields_
{
i
})
.
avg_z_sm
))
'
;
p
=
seldata
.
(
fields_
{
i
})
.
numtime
(
~
isnan
(
seldata
.
(
fields_
{
i
})
.
avg_z_sm
))
-
...
min
(
seldata
.
(
fields_
{
i
})
.
numtime
);
n
=
length
(
z
);
cpsums
.
n
(
i
)
=
n
;
cpsums
.
ZmeanR
(
i
)
=
n
*
sum
(
var
(
z
,
1
,
2
));
cpsums
.
ZstdR
(
i
)
=
sum
(
n
*
log
(
var
(
z
,
1
,
2
)));
cpsums
.
ZrmsR
(
i
)
=
sum
(
n
*
log
(
sum
(
z
.^
2
,
2
)/
n
));
% residus for each of the stats with one CP - Z data
[
~
,
cpsums
.
ZmeanR1
(
i
)]
=
F2_cpsingle
(
z
,
'mean'
,
300
);
[
~
,
cpsums
.
ZstdR1
(
i
)]
=
F2_cpsingle
(
z
,
'std'
,
300
);
[
~
,
cpsums
.
ZrmsR1
(
i
)]
=
F2_cpsingle
(
z
,
'rms'
,
300
);
%
cdd
=
seldata
.
(
fields_
{
i
})
.
centerdist
(
~
isnan
(
seldata
.
(
fields_
{
i
})
.
centerdist
))
'
;
p
=
seldata
.
(
fields_
{
i
})
.
numtime
(
~
isnan
(
seldata
.
(
fields_
{
i
})
.
centerdist
))
-
...
min
(
seldata
.
(
fields_
{
i
})
.
numtime
);
n
=
length
(
cdd
);
cpsums
.
n
(
i
)
=
n
;
cpsums
.
CDmeanR
(
i
)
=
n
*
sum
(
var
(
cdd
,
1
,
2
));
cpsums
.
CDstdR
(
i
)
=
sum
(
n
*
log
(
var
(
cdd
,
1
,
2
)));
cpsums
.
CDrmsR
(
i
)
=
sum
(
n
*
log
(
sum
(
cdd
.^
2
,
2
)/
n
));
% residus for each of the stats with one CP - Z data
[
~
,
cpsums
.
CDmeanR1
(
i
)]
=
F2_cpsingle
(
cdd
,
'mean'
,
300
);
[
~
,
cpsums
.
CDstdR1
(
i
)]
=
F2_cpsingle
(
cdd
,
'std'
,
300
);
[
~
,
cpsums
.
CDrmsR1
(
i
)]
=
F2_cpsingle
(
cdd
,
'rms'
,
300
);
end
% difference between zero and one cp
cpsums
.
ZmeanDif
=
cpsums
.
ZmeanR
-
cpsums
.
ZmeanR1
;
cpsums
.
ZstdDif
=
cpsums
.
ZstdR
-
cpsums
.
ZstdR1
;
cpsums
.
ZrmsDif
=
cpsums
.
ZrmsR
-
cpsums
.
ZrmsR1
;
cpsums
.
CDmeanDif
=
cpsums
.
CDmeanR
-
cpsums
.
CDmeanR1
;
cpsums
.
CDstdDif
=
cpsums
.
CDstdR
-
cpsums
.
CDstdR1
;
cpsums
.
CDrmsDif
=
cpsums
.
CDrmsR
-
cpsums
.
CDrmsR1
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment