Skip to content
Snippets Groups Projects
Commit 44ff4c0a authored by Hartanto, Margi's avatar Hartanto, Margi
Browse files

add procedure to calculate the average rank of genes over different threshold

parent 1223305a
No related branches found
No related tags found
No related merge requests found
......@@ -22,10 +22,10 @@
library(Hmisc)
# determine the stage and transband ####
dev.stage <- 'im'
dev.stage <- 'rp'
chr <- 5
start <- 6000000
end <- 8000000
start <- 24000000
end <- 26000000
n.perm <- 1000
# load required data ####
......@@ -291,7 +291,30 @@
plot(threshold.m$threshold,
threshold.m$node,
xlab = "rank threshold",
ylab = 'number of node') # 1552 for RP5 and 1248 for PD3
ylab = 'number of node') # 1552 for RP4 and 1248 for PD2
# determine the stability of rank (RP4)
degree.table <- data.frame(candidates = candidates)
for(i in max(round(edges$interaction, 0)):1) {
print(i)
edge.thresholded <- filter(edges, interaction <= i)
degree.table.tmp <- as.data.frame(table(edge.thresholded$source))
colnames(degree.table.tmp) <- c("candidates", i)
rank.degree.table <- merge(data.frame(candidates = candidates),
degree.table.tmp, all.x = T)
rank.degree.table$rank <- rank(-rank.degree.table[, 2],
na.last = T, ties.method = 'average')
degree.table[, paste0(i)] <- rank(-rank.degree.table[, 2],
na.last = T, ties.method = 'average')
}
all.rank <- data.frame(candidates,
mean = round(apply(degree.table[2:ncol(degree.table)], 1, mean), 2),
sd = round(apply(degree.table[2:ncol(degree.table)], 1, sd), 2))
all.rank <- all.rank[order(all.rank$mean), ]
write.csv(all.rank, paste0('networks/', dev.stage, chr, '-ranks.csv'))
# visualize the network
edges.th <- filter(edges, interaction <= 288)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment