Skip to content
Snippets Groups Projects
Commit ea64f4d6 authored by Peters, Wouter's avatar Peters, Wouter
Browse files

The code now tests for the presence of the optimizer file, which is False for...

The code now tests for the presence of the optimizer file, which is False for the purely forward runs. If not present, some steps related to the forecast variables are skipped.

parent 3031b2c0
No related branches found
No related tags found
No related merge requests found
......@@ -37,6 +37,7 @@ def WriteMixingRatios(DaCycle):
from string import join
import shutil
import logging
import netCDF4
dirname = 'data_molefractions'
......@@ -57,7 +58,7 @@ def WriteMixingRatios(DaCycle):
# Step (1): Get the posterior sample output data file for this cycle
infile = os.path.join(DaCycle['dir.output'],'sampleinfo_%s.nc'% DaCycle['time.sample.stamp'])
infile = os.path.join(DaCycle['dir.output'],'sampleinfo_%s__newstyle.nc'% DaCycle['time.sample.stamp'])
ncf_in = io.CT_Read(infile,'read')
......@@ -65,8 +66,9 @@ def WriteMixingRatios(DaCycle):
obs_val = ncf_in.GetVariable('observed')
simulated = ncf_in.GetVariable('modelsamples')
infilename= ncf_in.GetVariable('inputfilename')
infiles = netCDF4.chartostring(infilename).tolist()
infiles = [join(s.compressed(),'') for s in infilename]
#infiles = [join(s.compressed(),'') for s in infilename]
ncf_in.close()
......@@ -74,25 +76,33 @@ def WriteMixingRatios(DaCycle):
infile = os.path.join(DaCycle['dir.output'],'optimizer.%s.nc'% startdate.strftime('%Y%m%d') )
ncf_fc_in = io.CT_Read(infile,'read')
if os.path.exists(infile):
optimized_present = True
else:
optimized_present = False
fc_obs_num = ncf_fc_in.GetVariable('obspack_num')
fc_obs_val = ncf_fc_in.GetVariable('observed')
fc_simulated = ncf_fc_in.GetVariable('modelsamplesmean_prior')
fc_simulated_ens = ncf_fc_in.GetVariable('modelsamplesdeviations_prior')
fc_flag = ncf_fc_in.GetVariable('flag')
fc_r = ncf_fc_in.GetVariable('modeldatamismatchvariance').diagonal()
fc_hphtr = ncf_fc_in.GetVariable('totalmolefractionvariance').diagonal()
filesitecode = ncf_fc_in.GetVariable('sitecode')
if optimized_present:
fc_sitecodes = [join(s.compressed(),'') for s in filesitecode]
ncf_fc_in = io.CT_Read(infile,'read')
ncf_fc_in.close()
fc_obs_num = ncf_fc_in.GetVariable('obspack_num')
fc_obs_val = ncf_fc_in.GetVariable('observed')
fc_simulated = ncf_fc_in.GetVariable('modelsamplesmean_prior')
fc_simulated_ens = ncf_fc_in.GetVariable('modelsamplesdeviations_prior')
fc_flag = ncf_fc_in.GetVariable('flag')
fc_r = ncf_fc_in.GetVariable('modeldatamismatchvariance').diagonal()
fc_hphtr = ncf_fc_in.GetVariable('totalmolefractionvariance').diagonal()
filesitecode = ncf_fc_in.GetVariable('sitecode')
# Expand the list of input files with those available from the forecast list
fc_sitecodes = netCDF4.chartostring(filesitecode).tolist()
#fc_sitecodes = [join(s.compressed(),'') for s in filesitecode]
infiles_rootdir = os.path.split(infiles[0])[0]
infiles.extend(os.path.join(infiles_rootdir,f+'.nc') for f in fc_sitecodes)
ncf_fc_in.close()
# Expand the list of input files with those available from the forecast list
infiles_rootdir = os.path.split(infiles[0])[0]
infiles.extend(os.path.join(infiles_rootdir,f+'.nc') for f in fc_sitecodes)
#Step (2): For each observation timeseries we now have data for, open it and fill with data
......@@ -240,7 +250,7 @@ def WriteMixingRatios(DaCycle):
# Get all obs_nums related to this file, determine their indices in the local arrays
selected_obs_nums = [num for infile,num in zip(infiles,obs_num) if infile == orig_file]
selected_fc_obs_nums = [num for sitecode,num in zip(fc_sitecodes,fc_obs_num) if sitecode in orig_file]
# Optimized data 1st: For each index, get the data and add to the file in the proper file index location
......@@ -263,28 +273,32 @@ def WriteMixingRatios(DaCycle):
# Now forecast data too: For each index, get the data and add to the file in the proper file index location
for num in selected_fc_obs_nums:
if optimized_present:
model_index = fc_obs_num.tolist().index(num)
file_index = file_obs_nums.tolist().index(num)
selected_fc_obs_nums = [num for sitecode,num in zip(fc_sitecodes,fc_obs_num) if sitecode in orig_file]
for num in selected_fc_obs_nums:
model_index = fc_obs_num.tolist().index(num)
file_index = file_obs_nums.tolist().index(num)
var = ncf_out.variables['modeldatamismatch']
var[file_index] = np.sqrt(fc_r[model_index])
var = ncf_out.variables['modeldatamismatch']
var[file_index] = np.sqrt(fc_r[model_index])
var = ncf_out.variables['modelsamplesmean_forecast']
var[file_index] = fc_simulated[model_index]
var = ncf_out.variables['modelsamplesmean_forecast']
var[file_index] = fc_simulated[model_index]
var = ncf_out.variables['modelsamplesstandarddeviation_forecast']
var[file_index] = fc_simulated_ens[model_index,1:].std()
var = ncf_out.variables['modelsamplesstandarddeviation_forecast']
var[file_index] = fc_simulated_ens[model_index,1:].std()
var = ncf_out.variables['modelsamplesensemble_forecast']
var[file_index] = fc_simulated_ens[model_index,:]
var = ncf_out.variables['modelsamplesensemble_forecast']
var[file_index] = fc_simulated_ens[model_index,:]
var = ncf_out.variables['totalmolefractionvariance_forecast']
var[file_index] = fc_hphtr[model_index]
var = ncf_out.variables['totalmolefractionvariance_forecast']
var[file_index] = fc_hphtr[model_index]
var = ncf_out.variables['flag_forecast']
var[file_index] = fc_flag[model_index]
var = ncf_out.variables['flag_forecast']
var[file_index] = fc_flag[model_index]
# close the file
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment