Skip to content
Snippets Groups Projects
Commit 449d1ffb authored by brunner's avatar brunner
Browse files

octe

parent 45dbde5a
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env python
# model.py
import logging
import os
import sys
import subprocess
import da.cosmo.io4 as io
import numpy as np
from netCDF4 import Dataset
from datetime import datetime, timedelta
from dateutil import rrule
from cdo import *
from . import site_height
from da.cosmo.icbc4ctdas import ct
from itertools import repeat
from multiprocessing import Pool
from da.tools.general import to_datetime
identifier = 'ObservationOperator'
version = '10'
cdo = Cdo()
################### Begin Class ObservationOperator ###################
class ObservationOperator(object):
def __init__(self, dacycle=None):
self.ID = identifier
self.version = version
self.restart_filelist = []
self.output_filelist = []
self.outputdir = None # Needed for opening the samples.nc files created
logging.info('Observation Operator object initialized: %s' % self.ID)
if dacycle != None:
self.dacycle = dacycle
else:
self.dacycle = {}
def get_initial_data(self):
""" This method places all initial data needed by an ObservationOperator in the proper folder for the model """
def setup(self,dacycle):
""" Perform all steps necessary to start the observation operator through a simple Run() call """
self.dacycle = dacycle
self.outputdir = dacycle['dir.output']
def prepare_run(self):
""" Prepare the running of the actual forecast model, for example compile code """
# Define the name of the file that will contain the modeled output of each observation
self.simulated_file = os.path.join(self.outputdir, 'samples_simulated.%s.nc' % self.dacycle['time.sample.stamp'])
self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])
def run(self,lag,dacycle,statevector,advance=False):
members = statevector.ensemble_members[lag]
self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])
self.nparams = int(self.dacycle['nparameters'])
absolute_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y%m%d%H'))
absolute_start_time_ch = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y-%m-%d'))
starth = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.start']).days)*24
endh = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.finish']).days)*24
f = io.CT_CDF(self.simulated_file, method='create')
logging.debug('Creating new simulated observation file in ObservationOperator (%s)' % self.simulated_file)
dimid = f.createDimension('obs_num', size=None)
dimid = ('obs_num',)
savedict = io.std_savedict.copy()
savedict['name'] = "obs_num"
savedict['dtype'] = "int"
savedict['long_name'] = "Unique_Dataset_observation_index_number"
savedict['units'] = ""
savedict['dims'] = dimid
savedict['comment'] = "Unique index number within this dataset ranging from 0 to UNLIMITED."
f.add_data(savedict,nsets=0)
dimmember = f.createDimension('nmembers', size=self.forecast_nmembers)
dimmember = ('nmembers',)
savedict = io.std_savedict.copy()
savedict['name'] = "flask"
savedict['dtype'] = "float"
savedict['long_name'] = "mole_fraction_of_trace_gas_in_dry_air"
savedict['units'] = "ppm"
savedict['dims'] = dimid + dimmember
savedict['comment'] = "Simulated model value created by COSMO"
f.add_data(savedict,nsets=0)
# Open file with x,y,z,t of model samples that need to be sampled
f_in = io.ct_read(self.dacycle['ObsOperator.inputfile'],method='read')
# Get simulated values and ID
ids = f_in.get_variable('obs_num')
obs = f_in.get_variable('observed')
mdm = f_in.get_variable('modeldatamismatch')
f_in.close()
shape = (self.forecast_nmembers,mdm.size)
model_data=np.empty(shape=shape) # 3x7
self.lambda_file = os.path.join(self.outputdir, 'lambda.%s.nc' % self.dacycle['time.sample.stamp'])
ofile = Dataset(self.lambda_file, mode='w')
opar = ofile.createDimension('param', self.nparams)
omem = ofile.createDimension('member', self.forecast_nmembers)#len(members.nmembers))
l = ofile.createVariable('lambda', np.float32, ('member','param'),fill_value=-999.99)
co2 = np.empty(shape=(self.forecast_nmembers,self.nparams))
for m in range(0,20):
co2[m,:] = members[m].param_values
l[:] = co2
ofile.close()
os.chdir(dacycle['da.obsoperator.home'])
if os.path.exists(dacycle['dir.da_run']+'/'+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168)+"/cosmo/output/"):
if os.path.exists(dacycle['dir.da_run']+"/non_opt_"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168)+"/cosmo/output/"):
os.rename(dacycle['dir.da_run']+"/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168), dacycle['dir.da_run']+"/old_non_opt_"+dacycle['time.start'].strftime('%Y%m%d%H')+"_"+str(starth+lag*168)+"_"+str(endh+lag*168))
else:
os.rename(dacycle['dir.da_run']+"/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168), dacycle['dir.da_run']+"/non_opt_"+dacycle['time.start'].strftime('%Y%m%d%H')+"_"+str(starth+lag*168)+"_"+str(endh+lag*168))
os.system('python run_chain.py '+self.dacycle['run.name']+' '+absolute_start_time_ch+' '+str(starth+lag*168)+' '+str(endh+lag*168)+' -j meteo icbc emissions int2lm post_int2lm octe online_vprm cosmo')
logging.info('COSMO done!')
os.chdir(dacycle['dir.da_run'])
args = [
(dacycle, starth+168*lag, endh+168*lag-1, n)
for n in range(0,self.forecast_nmembers)
]
with Pool(self.forecast_nmembers) as pool:
pool.starmap(self.extract_model_data, args)
for i in range(0,self.forecast_nmembers):
idx = str(i).zfill(3)
cosmo_file = os.path.join('/store/empa/em05/parsenov/cosmo_data/model_'+idx+'_%s.nc' % dacycle['time.sample.stamp'])
ifile = Dataset(cosmo_file, mode='r')
model_data[i,:] = (np.squeeze(ifile.variables['CO2'][:])*29./44.01)*1E6 # in ppm
ifile.close()
for j,data in enumerate(zip(ids,obs,mdm)):
f.variables['obs_num'][j] = data[0]
f.variables['flask'][j,:] = model_data[:,j]
f.close()
logging.info('ObservationOperator finished successfully, output file written (%s)' % self.simulated_file)
def run_forecast_model(self, lag, dacycle, statevector, advance):
self.prepare_run()
self.run(lag, dacycle, statevector, advance)
def extract_model_data(self, dacycle, hstart, hstop, ensnum):
self.dacycle = dacycle
time_stamp = dacycle['time.sample.stamp']
abs_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y%m%d%H'))
cosmo_out = dacycle['dir.da_run']+"/"+abs_start_time+"_"+str(hstart)+"_"+str(hstop+1)+"/cosmo/output/"
hhl_cosmo_out = dacycle['dir.da_run']+"/"+abs_start_time+"_0_168/cosmo/output/"
cosmo_save = "/store/empa/em05/parsenov/cosmo_data/"
hhl_fn = hhl_cosmo_out+'lffd'+abs_start_time+'c.nc'
ens = str(ensnum).zfill(3)
files2cat_jfj=[]
files2cat_lhw=[]
files2cat_brm=[]
files2cat_ssl=[]
if ens == "000":
cdo.selname("HHL", input = hhl_fn, output = cosmo_out+"hhl.nc")
cdo.remapnn("lon=7.99_lat=46.54,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_jfj.nc")
cdo.remapnn("lon=8.40_lat=47.48,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_lhw.nc")
cdo.remapnn("lon=8.18_lat=47.19,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_brm.nc")
cdo.remapnn("lon=7.92_lat=47.92,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_ssl.nc")
for dt in rrule.rrule(rrule.HOURLY, dtstart=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstart), until=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstop)):
dt=dt.strftime('%Y%m%d%H')
logging.info('Extracting output for ens %s, time %s' % (str(ens),str(dt)))
co2_in_fn = cosmo_out+'lffd'+dt+'.nc'
co2_out_jfj = cosmo_out+'CO2_jfj_'+ens+'_'+dt+'.nc'
co2_out_lhw = cosmo_out+'CO2_lhw_'+ens+'_'+dt+'.nc'
co2_out_brm = cosmo_out+'CO2_brm_'+ens+'_'+dt+'.nc'
co2_out_ssl = cosmo_out+'CO2_ssl_'+ens+'_'+dt+'.nc'
cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=7.99_lat=46.54 -selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_jfj)
cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=8.40_lat=47.48 -selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_lhw)
cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=8.18_lat=47.19 -selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_brm)
cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=7.92_lat=47.92 -selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_ssl)
files2cat_jfj.append(co2_out_jfj)
files2cat_lhw.append(co2_out_lhw)
files2cat_brm.append(co2_out_brm)
files2cat_ssl.append(co2_out_ssl)
cdo.cat(input = files2cat_jfj, output = cosmo_out+"CO2_jfj_"+ens+"_"+time_stamp+".nc")
cdo.cat(input = files2cat_lhw, output = cosmo_out+"CO2_lhw_"+ens+"_"+time_stamp+".nc")
cdo.cat(input = files2cat_brm, output = cosmo_out+"CO2_brm_"+ens+"_"+time_stamp+".nc")
cdo.cat(input = files2cat_ssl, output = cosmo_out+"CO2_ssl_"+ens+"_"+time_stamp+".nc")
sites = ("lhw","brm","jfj","ssl")
for s,ss in enumerate(sites):
site_height.main(cosmo_out, str(ens), ss, time_stamp)
cdo.intlevel("860", input = cosmo_out+"CO2_60lev_"+ens+"_lhw_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_lhw_"+time_stamp+".nc")
cdo.intlevel("1009", input = cosmo_out+"CO2_60lev_"+ens+"_brm_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc")
cdo.intlevel("3580", input = cosmo_out+"CO2_60lev_"+ens+"_jfj_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc")
cdo.intlevel("1205", input = cosmo_out+"CO2_60lev_"+ens+"_ssl_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc")
cdo.cat(input = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_lhw_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc ", output = cosmo_save+"model_"+ens+"_"+time_stamp+".nc")
logging.info('Extracting done for ens %s' % (ens))
################### End Class ObservationOperator ###################
class RandomizerObservationOperator(ObservationOperator):
""" This class holds methods and variables that are needed to use a random number generated as substitute
for a true observation operator. It takes observations and returns values for each obs, with a specified
amount of white noise added
"""
if __name__ == "__main__":
pass
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment