Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CTDAS
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
CTDAS
CTDAS
Commits
0e7df5f6
Commit
0e7df5f6
authored
7 years ago
by
weihe
Browse files
Options
Downloads
Patches
Plain Diff
revised additive scheme
parent
27811f35
Loading
Loading
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
da/stilt/optimizer.py
+59
-43
59 additions, 43 deletions
da/stilt/optimizer.py
with
59 additions
and
43 deletions
da/stilt/optimizer.py
+
59
−
43
View file @
0e7df5f6
"""
CarbonTracker Data Assimilation Shell (CTDAS) Copyright (C) 2017 Wouter Peters.
Users are recommended to contact the developers (wouter.peters@wur.nl) to receive
updates of the code. See also: http://www.carbontracker.eu.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
version 3. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.
"""
#!/usr/bin/env python
# optimizer.py
"""
Author : peters
Author : peters
Revision History:
File created on 28 Jul 2010.
...
...
@@ -55,12 +43,12 @@ class CO2Optimizer(Optimizer):
elif
self
.
nmembers
==
150
:
self
.
tvalue
=
1.97591
elif
self
.
nmembers
==
200
:
self
.
tvalue
=
1.9719
else
:
self
.
tvalue
=
0
self
.
tvalue
=
1.9719
else
:
self
.
tvalue
=
0
else
:
self
.
localization
=
False
self
.
localizetype
=
'
None
'
logging
.
info
(
"
Current localization option is set to %s
"
%
self
.
localizetype
)
if
self
.
localization
==
True
:
if
self
.
tvalue
==
0
:
...
...
@@ -72,9 +60,9 @@ class CO2Optimizer(Optimizer):
"""
localize the Kalman Gain matrix
"""
import
numpy
as
np
if
not
self
.
localization
:
if
not
self
.
localization
:
logging
.
debug
(
'
Not localized observation %i
'
%
self
.
obs_ids
[
n
])
return
return
if
self
.
localizetype
==
'
CT2007
'
:
count_localized
=
0
for
r
in
range
(
self
.
nlag
*
self
.
nparams
):
...
...
@@ -92,7 +80,7 @@ class CO2Optimizer(Optimizer):
self
.
algorithm
=
'
Serial
'
else
:
self
.
algorithm
=
'
Bulk
'
logging
.
info
(
"
Current minimum least squares algorithm is set to %s
"
%
self
.
algorithm
)
...
...
@@ -101,17 +89,20 @@ class CO2Optimizer(Optimizer):
def
serial_minimum_least_squares
(
self
):
"""
Make minimum least squares solution by looping over obs
"""
import
numpy
as
np
for
n
in
range
(
self
.
nobs
):
#
for n in range(self.nobs):
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
#
res = self.obs[n] - self.Hx[n]
if
self
.
may_reject
[
n
]:
threshold
=
self
.
rejection_threshold
*
np
.
sqrt
(
self
.
R
[
n
])
if
np
.
abs
(
res
)
>
threshold
:
logging
.
debug
(
'
Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)
'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
res
,
threshold
))
self
.
flags
[
n
]
=
2
continue
#
if self.may_reject[n]:
#
threshold = self.rejection_threshold * np.sqrt(self.R[n])
#
if np.abs(res) > threshold:
#
logging.debug('Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)' % (self.sitecode[n], self.obs_ids[n], res, threshold))
#
self.flags[n] = 2
#
continue
#test=np.zeros((self.Hx.shape[0]),)
#test[:]=self.Hx[:]
#logging.info("Total HX array: %s"%test)
for
n
in
range
(
self
.
nobs
):
...
...
@@ -121,24 +112,34 @@ class CO2Optimizer(Optimizer):
logging
.
debug
(
'
Skipping observation (%s,%i) because of flag value %d
'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
self
.
flags
[
n
]))
continue
# Screen for outliers greather than 3x model-data mismatch, only apply if obs may be rejected
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
if
self
.
may_reject
[
n
]:
threshold
=
self
.
rejection_threshold
*
np
.
sqrt
(
self
.
R
[
n
])
if
np
.
abs
(
res
)
>
threshold
:
logging
.
debug
(
'
Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)
'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
res
,
threshold
))
self
.
flags
[
n
]
=
2
continue
logging
.
debug
(
'
Proceeding to assimilate observation %s, %i
'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
]))
PHt
=
1.
/
(
self
.
nmembers
-
1
)
*
np
.
dot
(
self
.
X_prime
,
self
.
HX_prime
[
n
,
:])
self
.
HPHR
[
n
]
=
1.
/
(
self
.
nmembers
-
1
)
*
(
self
.
HX_prime
[
n
,
:]
*
self
.
HX_prime
[
n
,
:]).
sum
()
+
self
.
R
[
n
]
self
.
KG
[:]
=
PHt
/
self
.
HPHR
[
n
]
self
.
KG
[:,
n
]
=
PHt
/
self
.
HPHR
[
n
]
#if 'surface' in self.sitecode[n]:
# self.KG[-4:,n]=0.
# self.KG[3078:3082,n]=0.
# logging.debug('BC KG value set to zero for %s' %(self.sitecode[n]))
#if 'aircraft' in self.sitecode[n]:
# self.KG[0:3078,n]=0.
# self.KG[3082:-4,n]=0.
# logging.debug('Flux KG values set to zero for %s' %(self.sitecode[n]))
if
'
surface
'
in
self
.
sitecode
[
n
]:
self
.
KG
[
-
1
]
=
0.
self
.
KG
[
3078
]
=
0
logging
.
debug
(
'
BC KG value set to zero for %s
'
%
(
self
.
sitecode
[
n
]))
if
'
aircraft
'
in
self
.
sitecode
[
n
]:
self
.
KG
[
0
:
3078
]
=
0.
self
.
KG
[
3079
:
-
1
]
=
0.
logging
.
debug
(
'
Flux KG values set to zero for %s
'
%
(
self
.
sitecode
[
n
]))
if
self
.
may_localize
[
n
]:
logging
.
debug
(
'
Trying to localize observation %s, %i
'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
]))
...
...
@@ -149,15 +150,16 @@ class CO2Optimizer(Optimizer):
alpha
=
np
.
double
(
1.0
)
/
(
np
.
double
(
1.0
)
+
np
.
sqrt
((
self
.
R
[
n
])
/
self
.
HPHR
[
n
]))
self
.
x
[:]
=
self
.
x
+
self
.
KG
[:]
*
res
logging
.
debug
(
'
Residual %s
'
%
res
)
logging
.
debug
(
'
New self.KG BC1 %s
'
%
self
.
KG
[
3078
])
logging
.
debug
(
'
New self.KG BC2 %s
'
%
self
.
KG
[
-
1
])
logging
.
debug
(
'
New self.x BC1 %s
'
%
self
.
x
[
3078
])
logging
.
debug
(
'
New self.x BC2 %s
'
%
self
.
x
[
-
1
])
self
.
x
[:]
=
self
.
x
+
self
.
KG
[:,
n
]
*
res
#logging.debug('Residual %s'%res)
#logging.debug('obs = %s, Hx = %s,Hx(CAR) = %s, Hxp(CAR) = %s, Hx_prime_std(CAR) = %s'%(self.obs[n],self.Hx[n],self.Hx[19],test[19],self.HX_prime[19,:].std()))
#logging.debug('New self.KG BC1 %s' %self.KG[3078,n])
#logging.debug('New self.KG BC2 %s' %self.KG[-1,n])
#logging.debug('New self.x BC1 %s' %self.x[3078])
#logging.debug('New self.x BC2 %s' %self.x[-1])
for
r
in
range
(
self
.
nmembers
):
self
.
X_prime
[:,
r
]
=
self
.
X_prime
[:,
r
]
-
alpha
*
self
.
KG
[:]
*
(
self
.
HX_prime
[
n
,
r
])
self
.
X_prime
[:,
r
]
=
self
.
X_prime
[:,
r
]
-
alpha
*
self
.
KG
[:
,
n
]
*
(
self
.
HX_prime
[
n
,
r
])
...
...
@@ -165,17 +167,31 @@ class CO2Optimizer(Optimizer):
#WP should always be updated last because it features in the loop of the adjustments !!!!
for
m
in
range
(
n
+
1
,
self
.
nobs
):
#if 'aircraft' in self.sitecode[m] and not 'aircraft' in self.sitecode[n]:
# continue
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
fac
=
1.0
/
(
self
.
nmembers
-
1
)
*
(
self
.
HX_prime
[
n
,
:]
*
self
.
HX_prime
[
m
,
:]).
sum
()
/
self
.
HPHR
[
n
]
self
.
Hx
[
m
]
=
self
.
Hx
[
m
]
+
fac
*
res
#if n==0 and m==19:
# logging.debug('self.HX_prime[n, :]= %s'%self.HX_prime[n, :])
# logging.debug('self.HX_prime[m, :]= %s'%self.HX_prime[m, :])
self
.
HX_prime
[
m
,
:]
=
self
.
HX_prime
[
m
,
:]
-
alpha
*
fac
*
self
.
HX_prime
[
n
,
:]
#logging.debug('m = %s, Corrcoef = %s, fac = %s'%(m, np.corrcoef(self.HX_prime[n, :],self.HX_prime[m, :])[0,1],fac))
for
m
in
range
(
1
,
n
+
1
):
#if 'aircraft' in self.sitecode[m] and not 'aircraft' in self.sitecode[n]:
# continue
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
fac
=
1.0
/
(
self
.
nmembers
-
1
)
*
(
self
.
HX_prime
[
n
,
:]
*
self
.
HX_prime
[
m
,
:]).
sum
()
/
self
.
HPHR
[
n
]
self
.
Hx
[
m
]
=
self
.
Hx
[
m
]
+
fac
*
res
self
.
HX_prime
[
m
,
:]
=
self
.
HX_prime
[
m
,
:]
-
alpha
*
fac
*
self
.
HX_prime
[
n
,
:]
# logging.debug('m = %s, Corrcoef = %s, fac = %s'%(m, np.corrcoef(self.HX_prime[n, :],self.HX_prime[m, :])[0,1],fac))
################### End Class CO2Optimizer ###################
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment