| ... | ... | @@ -94,7 +94,7 @@ PAR_{b} = 0.5 \cdot I_{0} |
|
|
|
DINupMPB is calculated from the maximum specific uptake rate ($`MPB_{upt,max}`$) [d<sup>-1</sup>] at ambient temperature and the algal concentration. Limitations by light and nutrients are described by Monod formulations.
|
|
|
|
|
|
|
|
```math
|
|
|
|
DIN_{upt,MPB}= MPB_{upt,max} \cdot MPB \cdot (1-\frac{MPB}{CC_{MPB} \cdot f_{int}}) \cdot (\frac{PAR_{b}}{PAR_{b} + ks_{PAR,MPB}}) \cdot (\frac{DIN}{DIN_\cdot + ks_{DIN,MPB}}) \cdot T_{fac}
|
|
|
|
DIN_{upt,MPB}= MPB_{upt,max} \cdot MPB \cdot (1-\frac{MPB}{CC_{MPB} \cdot f_{int}}) \cdot (\frac{PAR_{b}}{PAR_{b} + ks_{PAR,MPB}}) \cdot (\frac{DIN}{DIN + ks_{DIN,MPB}}) \cdot T_{fac}
|
|
|
|
```
|
|
|
|
Where $`MPB_{upt,max} `$ is the maximum DIN uptake rate [d<sup>-1</sup>] of microphytobenthos at 10°C, $`ks_{PAR,MPB}`$ and $`ks_{DIN,MPB}`$ are the half-saturation coefficients for light and DIN, respectively. Production of the microphytobenthos is limited by the carrying capacity ($`CC_{MPB}`$) [mmol N m<sup>-2</sup>] at the intertidal flat. $`T_{fac}`$ is the correction for the ambient water temperature.
|
|
|
|
|
| ... | ... | |