diff --git a/SpicyBytesStats.R b/SpicyBytesStats.R index 9ee43acbf3275863fc0fc2b256a30f4d1387f1b9..adb6e2d4ef050ec5966905bfe675fc05047a3c92 100644 --- a/SpicyBytesStats.R +++ b/SpicyBytesStats.R @@ -3,7 +3,7 @@ args <- commandArgs(trailingOnly = TRUE) treatment = args[1] mock = args[2] # the results will be saved in a csv with the treatment in the name -outfile <- paste0("../Stat_results/significant_genes_",treatment,".csv") +outfile <- paste0("./Stat_results/significant_genes_",treatment,".csv") #for later use treatment and mock must be 'condition[name]' treatment <- paste0("condition", treatment) mock <- paste0("condition", mock) @@ -26,7 +26,7 @@ kal_dirs = sapply(sample_ids, function(id) file.path(kallisto_dir, id)) ## design1.txt has to be created, should contain 2 columns sample and condition -s2c = read.table(file.path(base_dir,"/design1.txt"), header=TRUE, stringsAsFactors=FALSE) +s2c = read.table(file.path(base_dir,"/design_kallisto_result_boot.txt"), header=TRUE, stringsAsFactors=FALSE) # condition should be all the conditions, first per sample, then all the names #condition = factor(c("ST","ST","ST","HT","HT","HT"),c("ST","HT")) condition <- factor(s2c$condition, levels = unique(s2c$condition)) @@ -38,7 +38,7 @@ so = sleuth_prep(s2c, ~condition, extra_bootstrap_summary=TRUE, transformation_f # compares two different models so = sleuth_fit(so, ~condition, 'full') -so = sleuth_fit(so, ~treatment, 'reduced') +so = sleuth_fit(so, ~1, 'reduced') #so = sleuth_lrt(so, 'reduced', 'full') so = sleuth_wt(so, which_beta= mock, which_model='full') sleuth_table = sleuth_results(so, mock, 'wt', show_all=FALSE)