diff --git a/R_to_SQL_database/Cifos_Model_Data_EU.R b/R_to_SQL_database/Cifos_Model_Data_EU.R index 01c9f9267dada7f6522cd6d1dcd72d284d3171e4..a9e61b2293d01bb3e3352a4f46fc18c7685d16f0 100644 --- a/R_to_SQL_database/Cifos_Model_Data_EU.R +++ b/R_to_SQL_database/Cifos_Model_Data_EU.R @@ -906,18 +906,21 @@ dat_map_processing = dat_proc_asf %>% dplyr::select(proc_out) %>% # Comparing different processing sheets ---------------------------------- -dat_proc_rec = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Processing_Fraction" ) +# dat_proc_rec = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Processing_Fraction" ) -dat_proc_comp = Processing_sheet_final %>% left_join(dat_proc_rec %>% select(proc_out, Utilization), by="proc_out") %>% - mutate(Utilization = case_when(proc_out == "barleyfor" ~ "FeedOnly", - proc_out == "wheatfor" ~ "FeedOnly", - TRUE ~ Utilization)) %>% - dplyr::select(-dietary_products) %>% clean_names() - -write_csv(dat_proc_comp, "Input_data/processing_sheet_17_02_22.csv") - +# dat_proc_comp = Processing_sheet_final %>% left_join(dat_proc_rec %>% select(proc_out, Utilization), by="proc_out") %>% +# mutate(Utilization = case_when(proc_out == "barleyfor" ~ "FeedOnly", +# proc_out == "wheatfor" ~ "FeedOnly", +# TRUE ~ Utilization)) %>% +# dplyr::select(-dietary_products) %>% clean_names() +# +# write_csv(dat_proc_comp, "Input_data/processing_sheet_17_02_22.csv") +# Removing duplicates 22.2.22 ---------------------------------------------------- +dat_proc_dup = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Processing_Fraction" ) +dat_proc_dup %>% distinct() %>% write_csv("Input_data/processing_sheet_no_dup.csv") + # Human nutrition sheet --------------------------------------------------- # Human nutrtion sheet dat_humnutr = read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Human_Nutr") @@ -1108,6 +1111,26 @@ hum_nutr_all_FG = hum_nutr_all %>% dplyr::select(-FoodGroup) %>% # check = full_join(hum_nutr_all, proc_new, by = c("product"="proc_out")) write_csv(hum_nutr_all_FG, "Input_data/hum_nutr_all.csv") + +# Comparing versions - Demi NAs filling -------------------------------------- +hum_food_22.2.22 = read_xlsx('Input_data/Human_Food_Demi_22.2.22.xlsx', sheet = "Sheet1") +hum_food_latest = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Human_Food_Nutr" ) + +# Consistency checks - Are the same products in both of the sheets +# - Number of rows are identical 139 + +# # both sheets have the same products. Sheet can be directly replaced by demis sheet! +hum_food_22.2.22$Product[!hum_food_22.2.22$Product %in% hum_food_latest$Product] +hum_food_latest$Product[!hum_food_latest$Product %in% hum_food_22.2.22$Product] + +# Minor transformation and N calclation +hum_food_updated = hum_food_22.2.22 %>% dplyr::select(-USDA_Code) %>% + type.convert() %>% + dplyr::mutate(N = case_when(is.na(N) ~ Protein/6.25, + TRUE ~ N)) + +write_csv(hum_food_updated, "Input_data/Human_food_update_22_2_22.csv") + # Animal nutrition new ---------------------------------------------------- # Cifos sheet dat_animnutr = readxl::read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Animal_Nutr") @@ -1296,7 +1319,6 @@ FunAnimDatExtract = function(dat, cvb_code, cvb_name, product){ # Calculations #[F.H11] GE (kJ/kg) = 24.14 x CP + 36.57 x CFAT + 20.92 x CF + 16.99 x NFE - 0.63 x SUG* dplyr::mutate( - ge = case_when( sug > 80 ~ round((cp*24.14+cfat*36.57+cf*13.81+nfe*16.99-0.63*sug)/1000,1), sug <= 80 ~ round((cp*24.14+cfat*36.57+cf*13.81+nfe*16.99-0.63)/1000,1)), @@ -2002,6 +2024,17 @@ ani_nutr_v7.2.22=animal_nutrition_all_old %>% dplyr::select(c(product)) %>% write_csv(animal_nutrition_all, "Input_data/animal_nutrition_all.csv") read_csv("Input_data/animal_nutrition_all.csv") } + + +# Update - 22.2.22 ------------------------------------------------------- +dat_aninutr_recent = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Animal_Feed_Nutr" ) + +dat_aninutr_updated = dat_aninutr_recent %>% dplyr::select(-Origin) %>% + distinct(Product, .keep_all = T) + +write_csv(dat_aninutr_updated, "Input_data/dat_ani_nutr_update_22_2_22.csv") + + # Loss fraction sheet ---------------------------------------------------- dat_lossfrac = read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Loss_Fraction_New") dat_lossfrac_join= dat_lossfrac %>% dplyr::select(c(1:10)) %>% janitor::row_to_names(1)%>% select(-ProdCat ,-Fam_SPAM) %>% @@ -2614,6 +2647,15 @@ CropFert = write_csv(CropFert, "Input_data/cropfert_inter.csv") +# Fert_Nutr --------------------------------------------------------------- +# Sheet contains the products (procraw and procout) with NPK values on DM basis +proc_recent = read_excel("D:/GAMS/EU_model_Feb2022/European_CiFoS_model_data.xlsx", sheet = "Processing" ) + +dat_aninutr_updated = dat_aninutr_recent %>% dplyr::select(-Origin) %>% + distinct(Product, .keep_all = T) + +write_csv(dat_aninutr_updated, "Input_data/dat_ani_nutr_update_22_2_22.csv") + # Data maps --------------------------------------------------------------- # Anitas excel -- differs a bit to mine data_map = read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Data_Map")