diff --git a/R_to_SQL_database/Crop_cifos_DataPreparation_DB.R b/R_to_SQL_database/Crop_cifos_DataPreparation_DB.R
index 1a74574a4f80a2db996ac85100b9a3baaecd1e09..95ef88ae5f12a6931fbeaded15bbf56388683c3b 100644
--- a/R_to_SQL_database/Crop_cifos_DataPreparation_DB.R
+++ b/R_to_SQL_database/Crop_cifos_DataPreparation_DB.R
@@ -1,12 +1,11 @@
-
-# Loading packages --------------------------------------------------------
+Loading packages --------------------------------------------------------
 # Loading the packages
 # .libPaths("C:/Wolfram_Admin/R-4.1.2/R-4.1.2/library")
 # install.packages("easypackages", dependencies = T)
 # library("easypackages")
 # Loading packages 
 easypackages::packages("odbc","DBI", "RSQLite", "dbplyr", "readxl", "fuzzyjoin",
-                         "sqldf", "downloader", "tidyverse", "janitor", "FAOSTAT",
+                       "sqldf", "downloader", "tidyverse", "janitor", "FAOSTAT",
                        "validate")
 
 # https://www.youtube.com/watch?v=CydajdNRJOU -----------------------------
@@ -103,18 +102,18 @@ easypackages::packages("odbc","DBI", "RSQLite", "dbplyr", "readxl", "fuzzyjoin",
 
 # Connection to a structured EER diagramm
 con = dbConnect(odbc::odbc(), 
-                 .connection_string = "Driver={MySQL ODBC 8.0 Unicode Driver};",
-                 Server = "localhost", Database = "cifos_crop",  UID = "root", PWD = "154236w.S",
-                 Port = 3306)
+                .connection_string = "Driver={MySQL ODBC 8.0 Unicode Driver};",
+                Server = "localhost", Database = "cifos_crop",  UID = "root", PWD = "154236w.S",
+                Port = 3306)
 
 # Connection to a messy schema (no eer diagram)
 con_crop_map = dbConnect(odbc::odbc(), 
-                          .connection_string = "Driver={MySQL ODBC 8.0 Unicode Driver};",
-                          Server = "localhost", 
-                          Database = "crop_mapping", 
-                          UID = "root", 
-                          PWD = "154236w.S",
-                          Port = 3306)
+                         .connection_string = "Driver={MySQL ODBC 8.0 Unicode Driver};",
+                         Server = "localhost", 
+                         Database = "crop_mapping", 
+                         UID = "root", 
+                         PWD = "154236w.S",
+                         Port = 3306)
 
 # https://db.rstudio.com/getting-started/database-queries
 # Loading the data sets from Database -------------------------------------
@@ -132,23 +131,23 @@ mapping_grasscrops = read_csv("Input_data/mapping_grasscrops_new.csv") %>%
 dat_crop = as_tibble(crop) %>% 
   dplyr::mutate(old_cifos_crop = crop_cifos) %>% 
   dplyr::mutate(crop_cifos = ifelse(!is.na(crop_name_monfreda), 
-                                     crop_name_monfreda, 
-                                     crop_long_spam)) %>%  
+                                    crop_name_monfreda, 
+                                    crop_long_spam)) %>%  
   dplyr::filter(!grepl("grass", crop_cifos)) %>%
   bind_rows(.,mapping_grasscrops) %>% 
   mutate(crop_cifos = tolower(crop_cifos),
          crop_cifos = gsub("\\,", "", crop_cifos),
          crop_cifos = gsub(" ", "_", crop_cifos)) %>% 
   dplyr::mutate(crop_cifos = dplyr::recode(crop_cifos, 
-                                    "tobacco_unmanufactured" = "tobacco",
-                                    "groundnuts_with_shell" = "groundnuts",
-                                    # "dark_green_vegetables   " = "green_vegetables",
-                                    "other_roots_and_tubers" = "other_tubers",
-                                    # grepl("red_and_orange",crop_cifos) = "red_vegetables",
-                                    # "other_vegetables  " = "other_vegetables",
-                                    "sunflower_seed" = "sunflower",
-                                    "other_cereal_crops" = "other_cereals",
-                                    "sesame_seed" = "sesame"))
+                                           "tobacco_unmanufactured" = "tobacco",
+                                           "groundnuts_with_shell" = "groundnuts",
+                                           # "dark_green_vegetables   " = "green_vegetables",
+                                           "other_roots_and_tubers" = "other_tubers",
+                                           # grepl("red_and_orange",crop_cifos) = "red_vegetables",
+                                           # "other_vegetables  " = "other_vegetables",
+                                           "sunflower_seed" = "sunflower",
+                                           "other_cereal_crops" = "other_cereals",
+                                           "sesame_seed" = "sesame"))
 # write_csv(dat_crop, "Input_data/dat_crop_with_grass.csv") 
 
 #ISSUE: The vegetable values are behaving weird. Had to remove two spaces at the end manually in CSV. 
@@ -164,9 +163,9 @@ dat_crop_final = read_csv("Input_data/dat_crop_with_grass_final.csv")
 
 
 
-  #               crop_cifos = case_when(crop_cifos != is.na(crop_cifos) ~ crop_long_spam)) %>%
-  # dplyr::mutate(crop_cifos_2 = case_when(crop_cifos = is.na(crop_cifos) ~ crop_name_monfreda),
-  #               TRUE ~ crop_cifos)
+#               crop_cifos = case_when(crop_cifos != is.na(crop_cifos) ~ crop_long_spam)) %>%
+# dplyr::mutate(crop_cifos_2 = case_when(crop_cifos = is.na(crop_cifos) ~ crop_name_monfreda),
+#               TRUE ~ crop_cifos)
 
 # class(data_map)
 # 
@@ -244,7 +243,7 @@ dat_crop_final = read_csv("Input_data/dat_crop_with_grass_final.csv") %>%
   # Adding the grass to the old crop name columns so it will not result in NA later. 
   dplyr::mutate(old_cifos_crop = case_when(is.na(old_cifos_crop) ~ crop_cifos, 
                                            TRUE ~ old_cifos_crop))
-  
+
 # Fuzzy join of processing sheet and the crop map
 # crop_map_cifos_procraw = 
 dat_proc = Processing_sheet %>%
@@ -261,12 +260,12 @@ dat_proc = Processing_sheet %>%
                                    str_detect(crop_cifos, "grass") ~ crop_cifos,
                                    crop_cifos == "tobacco" ~ crop_cifos,
                                    crop_cifos == "seed_cotton" ~ crop_cifos,
-                         TRUE ~ .)),
+                                   TRUE ~ .)),
                 across(c(value), ~ case_when(str_detect(crop_cifos, "for") ~ 1,
                                              str_detect(crop_cifos, "grass") ~ 1,
                                              crop_cifos == "tobacco" ~ 1,
                                              crop_cifos == "seed_cotton" ~ 1,
-                                   TRUE ~ .))) 
+                                             TRUE ~ .))) 
 
 # removing disaggregated group elemetns  that are not needed - 
 # Aim: To have only one surrogate crop per crop_group (temperate_fruits = Apples)
@@ -293,7 +292,7 @@ dat_2nd_level2 = anti_join(Processing_sheet,dat_2nd_level, by = "ProRaw") %>%
                         "barley", "barley")) %>% 
   relocate(crop_cifos, .before = 1) %>% 
   clean_names()
-  
+
 
 
 dat_group = sqldf('SELECT * FROM dat_proc WHERE 
@@ -325,7 +324,7 @@ dat_group = sqldf('SELECT * FROM dat_proc WHERE
 dat_proc_2 = dat_proc %>% 
   anti_join(., dat_group, by = "crop_cifos") %>% #then I delete all the rows with unwanted duplicates 
   bind_rows(dat_group)#then I add the nicely filtered rows and get a clean df
-  
+
 # Adding missing dietary products
 
 # Cifos dietary products - here i filter for strings in the FAO database 
@@ -382,7 +381,7 @@ dat_dietprod_comp = dat_proc_2 %>%
     crop_cifos == "cocoa_beans" ~ "Cocoa Beans and products", # newly added to cifos;
     crop_cifos == "other_tubers" ~ "Vegetables, Other",
     TRUE ~ dietary_products))
-  
+
 # Removing Nas in the columns procin and procout. Rough assumption: all prcessing fractions = 1. Names from proc_raw
 
 vec_proc_raw = dat_dietprod_comp  %>% dplyr::filter(is.na(proc_in)) %>% pull(proc_raw)
@@ -400,14 +399,14 @@ dat_complete = dat_dietprod_comp %>%
   bind_rows(., dat_comp) %>% 
   distinct_all() %>%  # tobacco was triplicated
   bind_rows(dat_2nd_level2)
-  
+
 # write_csv(dat_complete, "Input_data/processing_sheet_2.csv")
 # dat_complete = read_csv("Input_data/processing_sheet_2.csv")
 
 # Isolate new dietary products 
 new_dietprods = dat_complete  %>%
   anti_join(., dat_proc_2, by="dietary_products")
-  
+
 # Distinct new dietary products 
 new_dietprods_dist = dat_complete  %>%
   anti_join(., dat_proc_2, by="dietary_products") %>% 
@@ -439,7 +438,7 @@ new_procin = dat_complete %>%
 # - If forage crops are represented as well as food crops they have to be merged to the food crop; 
 # That means they should get the same procin name but then get the different procout ("wheat_feed" or so)  
 print(new_procin, n=33)
-  
+
 print(new_procin, n=33)
 
 # A tibble: 33 x 6
@@ -498,14 +497,14 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   add_row(crop_cifos = "coconuts" , proc_raw = "coconuts" , proc_in = "coconuts_copra", proc_out = "coconuts_oil_copra", value = 0.21*0.64, dietary_products = "Coconut Oil") %>%
   add_row(crop_cifos = "coconuts" , proc_raw = "coconuts" , proc_in = "coconuts_copra", proc_out = "coconuts_cake_copra", value = 0.21*0.36, dietary_products = "Coconuts - Incl Copra") %>%
   
- 
+  
   # Cassava -- Source: from Technical Conversion Factors for Agricultural Commodities (http://countrystat.org/resources/documents/tcf.pdf); adjusted commodity tree.
   # Levels: only one level in tcf doc!
   add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_flourin", proc_out = "cassava_flour", value = 0.3, dietary_products = "Cassava and products") %>% 
   add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_tapiocain", proc_out = "cassava_tapioca", value = 0.2, dietary_products = "Cassava and products") %>%
   add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_dryin", proc_out = "cassava_dry", value = 0.35, dietary_products = "Cassava and products") %>%
   add_row(crop_cifos = "cassava" , proc_raw = "cassava" , proc_in = "cassava_starchin", proc_out = "cassava_starch", value = 0.25, dietary_products = "Cassava and products") %>%
-
+  
   # Pearl millet -- Source: from Technical Conversion Factors for Agricultural Commodities (http://countrystat.org/resources/documents/tcf.pdf); adjusted commodity tree; fractions from "cereals/millet"
   # levels: only one level
   add_row(crop_cifos = "pearl_millet" , proc_raw = "pearl_millet" , proc_in = "pearl_millet_flourin", proc_out = "pearl_millet_flour", value = 0.86, dietary_products = "Millet and products") %>% 
@@ -538,12 +537,12 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   
   add_row(crop_cifos = "sugar_cane" , proc_raw = "sugar_cane" , proc_in = "sugar_canein", proc_out = "sugarcane_molasse", value = 0.05, dietary_products = "Sugar cane") %>% 
   add_row(crop_cifos = "sugar_cane" , proc_raw = "sugar_cane" , proc_in = "sugar_canein", proc_out = "sugarcane_bagasse", value = 0.25, dietary_products = "Sugar cane") %>%
-
+  
   #sweet_potatoes -- commodity tree
   add_row(crop_cifos = "sweet_potatoes" , proc_raw = "sweet_potatoes" , proc_in = "sweet_potatoe_flourin", proc_out = "sweet_potatoe_flour", value = 0.25, dietary_products = "Sweet potatoes") %>% 
   add_row(crop_cifos = "sweet_potatoes" , proc_raw = "sweet_potatoes" , proc_in = "sweet_potatoe_starchin", proc_out = "sweet_potatoe_starch", value = 0.2, dietary_products = "Sweet potatoes") %>% 
-
-    # tea -- 
+  
+  # tea -- 
   add_row(crop_cifos = "tea" , proc_raw = "tea" , proc_in = "teain", proc_out = "tea_leave", value = 1, dietary_products = "Tea (including mate)") %>% 
   
   # yams -- 
@@ -613,12 +612,12 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   add_row(crop_cifos = "groundnuts" , proc_raw = "groundnut_shelled" , proc_in = "groundnuts_oilin", proc_out = "groundnut_cake", value = 0.54, dietary_products = "Groundnut Oil") %>% 
   
   add_row(crop_cifos = "groundnuts" , proc_raw = "groundnut_shelled" , proc_in = "groundnuts_butterin", proc_out = "groundnut_butter", value = 0.85, dietary_products = "Groundnuts (Shelled Eq)") %>% 
-
+  
   # Other cereals - commodity tree
   add_row(crop_cifos = "other_cereals" , proc_raw = "other_cereals" , proc_in = "other_cereals_flourin", proc_out = "other_cereals_flour", value = 0.8, dietary_products = "Cereals, Other") %>% 
   add_row(crop_cifos = "other_cereals" , proc_raw = "other_cereals" , proc_in = "other_cereals_flourin", proc_out = "other_cereals_bran", value = 0.2, dietary_products = "Cereals, Other") %>% 
   add_row(crop_cifos = "other_cereals" , proc_raw = "other_cereals" , proc_in = "other_cereals_wholein", proc_out = "other_cereals_whole", value = 1, dietary_products = "Cereals, Other") %>% 
-
+  
   # other_oil_crops - commodity tree (tables)
   # 1 level
   add_row(crop_cifos = "other_oil_crops" , proc_raw = "olives" , proc_in = "olive_tablein", proc_out = "olive_table", value = 1, dietary_products = "Olives (including preserved)") %>% 
@@ -666,7 +665,7 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   
   ## grass_rangeland - 
   add_row(crop_cifos = "grass_rangeland" , proc_raw = "grass_rangeland" , proc_in = "grass_rangeland_fresh", proc_out = "grass_rangeland_fresh", value = 0.30, dietary_products = "Forage and silage, grasses nes") %>% # Source: https://doi.org/10.1111/j.1469-8137.1994.tb04036.x - I take the lower bound 
-
+  
   ## alfalfafor     
   # grass_pasture -  Source: Source: https://www.feedipedia.org/node/275
   add_row(crop_cifos = "alfalfafor" , proc_raw = "alfalfafor" , proc_in = "alfalfafor_dry", proc_out = "alfalfafor_hay", value = 0.894, dietary_products = "Forage and silage, legumes") %>% #Alfalfa, hay, (feedepedia)
@@ -702,7 +701,7 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   # Levels: all pulses only one level
   add_row(crop_cifos = "legumenesfor" , proc_raw = "legumenesfor_feed" , proc_in = "legumenesfor_feedin", proc_out = "legumenesfor_bean", value = 0.866 , dietary_products = "Forage and silage, legumes") %>% # Faba bean (Vicia faba), all cultivars
   add_row(crop_cifos = "legumenesfor" , proc_raw = "legumenesfor_feed" , proc_in = "legumenesfor_feedin", proc_out = "legumenesfor_straw", value = 0.194 , dietary_products = "Forage and silage, legumes") %>% # Faba bean (Vicia faba), aerial part, fresh
-
+  
   # maizefor - https://www.feedipedia.org/node/13883 AND commodity tree FAO
   add_row(crop_cifos = "maizefor" , proc_raw = "maize_whole_feed" , proc_in = "maize_silagein", proc_out = "maize_silage", value =   0.325, dietary_products = "Forage products") %>% # Reference: Maize silage, dry matter 30-35% from https://www.feedipedia.org/node/12871
   add_row(crop_cifos = "maizefor" , proc_raw = "maize_whole_feed" , proc_in = "maize_oilin", proc_out = "maize_oil", value =   0.45*0.06, dietary_products = "Forage products") %>% # Reference: Commodidty tree fao same as with humans
@@ -769,7 +768,7 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   add_row(crop_cifos = "potatoes" , proc_raw = "potatoes" , proc_in = "potatoes_starch", proc_out = "potatoes_starch", value = 0.19, dietary_products = "Potatoes and products") %>%
   add_row(crop_cifos = "potatoes" , proc_raw = "potatoes" , proc_in = "potatoes_starch", proc_out = "tuber_peel", value =   0.02, dietary_products = "Potatoes and products") %>% 
   
-# Soybeans - tcf table if not otherwise stated 
+  # Soybeans - tcf table if not otherwise stated 
   add_row(crop_cifos = "soybeans" , proc_raw = "soybeans" , proc_in = "soyabean_for_oil", proc_out = "soyabean_oil", value =   0.19, dietary_products = "Soyabean Oil") %>%
   add_row(crop_cifos = "soybeans" , proc_raw = "soybeans" , proc_in = "soyabean_for_oil", proc_out = "soyabean_cake", value =   0.71, dietary_products = "Soyabeans") %>%  
   add_row(crop_cifos = "soybeans" , proc_raw = "soybeans" , proc_in = "soyabean_for_oil", proc_out = "soyabean_hulls", value =   0.07, dietary_products = "Soyabeans") %>% 
@@ -784,11 +783,11 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   
   # sunflower	- tcf fao
   add_row(crop_cifos = "sunflower" , proc_raw = "sunflower_seed" , proc_in = "sunflower_seed", proc_out = "sunflower_oil", value =   0.41, dietary_products = "Soyabean Oil") %>%
-  add_row(crop_cifos = "sunflower" , proc_raw = "sunflower_seed" , proc_in = "soyabean_for_oil", proc_out = "sunflower_cake", value =   0.47, dietary_products = "Soyabeans") %>%  
-  add_row(crop_cifos = "sunflower" , proc_raw = "sunflower_seed" , proc_in = "soyabean_for_oil", proc_out = "sunflower_hulls", value =   0.07, dietary_products = "Soyabeans") %>%   #ref from ollie (old proccessing sheet)
+  add_row(crop_cifos = "sunflower" , proc_raw = "sunflower_seed" , proc_in = "sunflower_for_oil", proc_out = "sunflower_cake", value =   0.47, dietary_products = "Soyabeans") %>%  
+  add_row(crop_cifos = "sunflower" , proc_raw = "sunflower_seed" , proc_in = "sunflower_for_oil", proc_out = "sunflower_hulls", value =   0.07, dietary_products = "Soyabeans") %>%   #ref from ollie (old proccessing sheet)
   
   # Paddy Rice - tcf fao
-    # husked rice
+  # husked rice
   add_row(crop_cifos = "rice" , proc_raw = "rice" , proc_in = "rice_husk", proc_out = "rice_husked", value =   0.77, dietary_products = "Rice (Milled Equivalent)") %>%
   add_row(crop_cifos = "rice" , proc_raw = "rice" , proc_in = "rice_husk", proc_out = "rice_hulls", value =   0.25, dietary_products = "Rice (Milled Equivalent)") %>%  
   # 2nd stage 
@@ -803,15 +802,15 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   # 2nd stage for bran oil/cake
   add_row(crop_cifos = "rice" , proc_raw = "bran_paddy_milled" , proc_in = "rice_bran_oil", proc_out = "rice_bran_oil", value =   0.80, dietary_products = "Ricebran Oil") %>%
   add_row(crop_cifos = "rice" , proc_raw = "bran_paddy_milled" , proc_in = "rice_bran_oil", proc_out = "rice_bran_cake", value =   0.14, dietary_products = "Ricebran Oil") %>% 
-
-# coffee - feedepedia -> https://www.feedipedia.org/node/549
+  
+  # coffee - feedepedia -> https://www.feedipedia.org/node/549
   add_row(crop_cifos = "arabica_coffee" , proc_raw = "coffee_green" , proc_in = "coffee_green", proc_out = "coffee_roasted", value =   0.8, dietary_products = "Coffee and products") %>%
   add_row(crop_cifos = "arabica_coffee" , proc_raw = "coffee_green" , proc_in = "coffee_green", proc_out = "coffee_hulls", value = 0.2, dietary_products = "Cocoa Beans and products") %>%#fraction comes from the cocoa husk. Could be improbved
-
+  
   # Sesame 
   add_row(crop_cifos = "sesame" , proc_raw = "sesame" , proc_in = "sesame_seed", proc_out = "sesame_oil", value =   0.42, dietary_products = "Sesameseed Oil") %>% #ref from old processing sheet
   add_row(crop_cifos = "sesame" , proc_raw = "sesame" , proc_in = "sesame_seed", proc_out = "sesame_cake", value = 0.57, dietary_products = "Sesame seed") %>%
-
+  
   # Banana 
   add_row(crop_cifos = "bananas" , proc_raw = "bananas" , proc_in = "bananas", proc_out = "bananas", value =   1, dietary_products = "Bananas") %>% #ref from old processing sheet
   
@@ -824,7 +823,7 @@ proc_new = tibble("crop_cifos" = NA, "proc_raw" = NA, "proc_in" = NA, "proc_out"
   # Treenuts
   add_row(crop_cifos = "treenuts" , proc_raw = "walnuts" , proc_in = "walnuts", proc_out = "walnuts", value =   0.04, dietary_products = "Nuts and products") %>%
   add_row(crop_cifos = "treenuts" , proc_raw = "walnuts" , proc_in = "walnuts", proc_out = "nut_shell", value =   0.04, dietary_products = "Nuts and products")
-  
+
 
 # Pulling crops that are updated 
 vec_proc_new = proc_new %>% distinct_at(vars(crop_cifos)) %>%  pull(crop_cifos)
@@ -860,22 +859,22 @@ dat_proc_new %>% write_csv("Input_data/dat_proc_new.csv")
 
 dat_proc_asf =
   Processing_sheet %>% dplyr::select(-c(6,7)) %>% 
-    clean_names() %>% rename(proc_raw = pro_raw) %>% 
-    slice(269:363) %>% 
+  clean_names() %>% rename(proc_raw = pro_raw) %>% 
+  slice(269:363) %>% 
   dplyr::mutate(dietary_products= case_when(proc_raw == "Milk" ~ "Milk - Excluding Butter", 
-                                     TRUE ~ dietary_products), 
-         dietary_products= case_when(proc_out == "Butter" ~ "Butter, Ghee", 
-                                     TRUE ~ dietary_products), 
-         dietary_products= case_when(dietary_products == "Fish (Calculated CiFoS)" ~ "Fish, Seafood",
-                                     TRUE ~ dietary_products),
-         proc_out = case_when(proc_out == "Butter_Milk" ~ "Butter_milk",
-                              TRUE ~ proc_out)) #this was written with a uppercase here and a lower case in the food losses sheet
+                                            TRUE ~ dietary_products), 
+                dietary_products= case_when(proc_out == "Butter" ~ "Butter, Ghee", 
+                                            TRUE ~ dietary_products), 
+                dietary_products= case_when(dietary_products == "Fish (Calculated CiFoS)" ~ "Fish, Seafood",
+                                            TRUE ~ dietary_products),
+                proc_out = case_when(proc_out == "Butter_Milk" ~ "Butter_milk",
+                                     TRUE ~ proc_out)) #this was written with a uppercase here and a lower case in the food losses sheet
+
 
-  
 
 Processing_sheet_final = bind_rows(dat_proc_new %>% dplyr::select(-crop_cifos),dat_proc_asf)
 write_csv(Processing_sheet_final, "Input_data/processing_sheet.csv")
-    
+
 
 # Human nutrition sheet ---------------------------------------------------
 #  Human nutrtion sheet
@@ -984,7 +983,7 @@ hum_nutr_all = bind_rows(food_old_match, food_psf_new, food_asf)
 
 # check = full_join(hum_nutr_all, proc_new, by = c("product"="proc_out"))
 write_csv(hum_nutr_all, "Input_data/hum_nutr_all.csv")
-  
+
 
 # Animal nutrition new ----------------------------------------------------
 # Cifos sheet 
@@ -1939,9 +1938,6 @@ loss_frac_all$Product[!loss_frac_all$Product %in% rbind(Processing_sheet_final$p
 # NONE --> GOOOD!
 
 
-
-
-
 # Fert_suitability sheet --------------------------------------------------
 dat_fertsuitability = read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Fert_Suitability") %>% 
   dplyr::rename(scenario=1,crop_cifos = 2) 
@@ -1951,18 +1947,18 @@ table_fert_suit = dat_fertsuitability %>% distinct_at(vars(scenario), .keep_all
 
 # List of all crops possible
 crop_list = proc_new %>% distinct_at(vars(crop_cifos)) %>% pull()
-  
+
 scen_baseline = tibble(scenario  = "Baseline", 
-                   crop_cifos = crop_list) 
+                       crop_cifos = crop_list) 
 
 scen_circular = tibble(scenario  = "Circular", 
-                   crop_cifos = crop_list) 
+                       crop_cifos = crop_list) 
 
 fert_suit = bind_rows(scen_baseline, scen_circular) %>% 
   left_join(table_fert_suit, by= "scenario")
 
 write_csv(fert_suit, "Input_data/fert_suitability.csv")
-  
+
 # Import sheet  -----------------------------------------------------------
 dat_ImportExport = read_excel("Input_data/Copy of European_CiFoS_model_data_ANITANov21.xlsx", sheet = "Import_Export") %>% 
   dplyr::select(c(1:3)) 
@@ -2002,7 +1998,7 @@ Baseline_import_export = FoodBalanceSheetFAO %>% as_tibble() %>%
          dietary_products=item) %>% 
   replace(is.na(.), 0) %>% #all the NA values (crops that are not grown or imported to the EU) are 0. 
   dplyr::filter(dietary_products %in% (diet_prod_dist %>% pull(dietary_products))) %>% 
-    replace(is.na(.), 0) # The forage, fibre and tabacco crops that have no match in column item are set to 0 (no import export assumed)
+  replace(is.na(.), 0) # The forage, fibre and tabacco crops that have no match in column item are set to 0 (no import export assumed)
 
 write_csv(Baseline_import_export, "Input_data/Baseline_import_export.csv")
 
@@ -2065,11 +2061,11 @@ Baseline_animal_number =
                 area_code %in% country_eu, #filtering for EU+UKD countries
                 item %in% c('Beef and Buffalo Meat','Chickens', 'Meat, Poultry',"Pigs", 'Milk, whole fresh cow'),
                 element %in% c("producing_animals_slaughtered", "stocks","milk_animals")) #%>% 
-  dplyr::group_by(area_code, item, element) %>%
+dplyr::group_by(area_code, item, element) %>%
   dplyr::summarise(value = mean(value, na.rm=T)) #%>%
-  pivot_wider(values_from = value, 
-              names_from = element) #%>% 
-  rename(crops=item) %>% 
+pivot_wider(values_from = value, 
+            names_from = element) #%>% 
+rename(crops=item) %>% 
   replace(is.na(.), 0) %>% #all the NA values (crops that are not grown or imported to the EU) are 0. 
   dplyr::filter(crops %in% dat_crop_fao_cifos_vec) %>% 
   replace(is.na(.), 0) %>%  #The forage, fibre and
@@ -2130,12 +2126,12 @@ crop_other_new =
   dplyr::mutate(crop_cifos = case_when(crop_cifos_old == "Grass_Managed_HQ"  ~ "grass_arable",
                                        crop_cifos_old == "Grass_Managed_MQ"  ~ "grass_pasture",
                                        crop_cifos_old == "Grass_Natural_MQ"  ~ "grass_rangeland",
-                                            TRUE ~ crop_cifos)) %>%
+                                       TRUE ~ crop_cifos)) %>%
   dplyr::select(-crop_cifos_old, -code_spam2010) %>% 
   distinct_at(vars(crop_cifos),.keep_all = T) %>% drop_na(crop_cifos)
 
 write_csv(crop_other_new, "Input_Data/crop_other_new.csv")
-  
+
 # cropnutr = read_excel('C:/Wolfram_Admin/GAMS/EU_model_frmSep21/cifos-model_eu/European_CiFoS_model_data.xlsx',sheet="CropNutr")
 # write_csv(cropnutr,"Input_data/cropnutr_old")
 cropnutr = read_csv("Input_data/cropnutr_old")
@@ -2146,14 +2142,14 @@ cropnutr_new =
   full_join(crop_map %>% dplyr::select(old_cifos_crop, crop_cifos), by = c("crop_cifos_old"="old_cifos_crop")) %>% 
   relocate(crop_cifos, .before = crop_cifos_old) %>% 
   dplyr::select(-crop_cifos_old)
-  
-  write_csv(cropnutr_new, "Input_data/cropnutr_new.csv")
+
+write_csv(cropnutr_new, "Input_data/cropnutr_new.csv")
 
 # CropFert_New NOT DONE! ------------------------------------------------------------
 # CropFert_New = read_excel("C:/Wolfram_Admin/GAMS/EU_model_frmSep21/cifos-model_eu/European_CiFoS_model_data.xlsx", sheet = "CropFert_New")
 # CropFert_New %>% write_csv("Input_data/CropFert_New.csv")
 CropFert_New = read_csv("Input_data/CropFert_New.csv")
-  
+
 CropFert =
   CropFert_New %>% 
   dplyr::rename(crop_cifos_old = `...1`) %>% 
@@ -2174,7 +2170,7 @@ proc_sheet_crops =  bind_rows(dat_proc_new ,dat_proc_asf) #%>% write_csv("Input_
 # Crops
 crop_datmap = dat_proc_new %>% select(crop_cifos) %>% distinct_all()
 write_csv(crop_datmap, "Input_data/crop_datmap.csv")
-  
+
 
 # ProcoutH and dietary products map
 ProcOutH_dietProduct = Processing_sheet_final %>% distinct_at(vars(proc_out), .keep_all = T) %>% 
@@ -2224,15 +2220,15 @@ Crop_Map2 =read_csv("Input_data/crop_map_mine.csv")
 diets_animal_crop_datamap =
   Crop_Map2 %>% slice(121:210)  %>% 
   dplyr::select(c(1:2)) %>% dplyr::rename(crop_cifos = `CROPS FAO...1`, 
-         proc_out = `Co-Product...2`) %>% 
+                                          proc_out = `Co-Product...2`) %>% 
   filter(proc_out != 'Grass_Natural_LQ') %>% 
   full_join(dat_proc_asf %>% dplyr::select(proc_out, dietary_products)) %>% 
   distinct_all() %>% 
   bind_rows(.,dat_proc_new %>% select(c(crop_cifos,4,6)))
-  
+
 write_csv(animal_map, "Input_Data/diets_animal_crop_datamap.csv")
-    
-  
+
+
 
 # crop_animal_co_prod_dietary
 
@@ -2278,14 +2274,3 @@ write_csv(animal_map, "Input_Data/diets_animal_crop_datamap.csv")
 # # Animals
 # #Animal_yield sheet 
 # 1. Yields (column D row 2)
-
-
-
-
-
-
-
-
-
-
-