
DATA REPLICATION AND RULES – S4R WORKSHOP

iRODS – Advanced user training

Christine Staiger, Arthur Newton

Support4research – iRODS training C. Staiger

Agenda

9.30 - 10.00 Recap of icommands

10.00 - 10.30 Data replication

10.30 -12.00 iRODS Federations and data synchronisation

12.00 -13.00 Lunch

13.00 -17.00 Rules, rules rules

Support4research – iRODS training C. Staiger

Storage – The users’ challenge

Disk S3 Tape
Storage layer:
Different storage media
Different protocols to steer data

+ Extra information:
attribute: distance
value: 12
units: miles

attribute: author
value: Alice
units:

Abstraction layer:
Mapping from logical
to physical
namespace

Support4research – iRODS training C. Staiger

In the Background:
iRODS resources

• (Storage)	Resource	is	a	Software	or	Hardware	system	that	stores	data
• 3	Resource	classes:

High
Latency
(Tape)Low

Latency (Disk)
“Virtual”

Resource

• Storage	Resource:	unix file system, s3, structured file type
univMSS,	opendap, tds (THREDDS)

Support4research – iRODS training C. Staiger

Resource groups

Low
Latency

Composable
Resource

Resource Resource

Composable
Resource

Resource

Composable resource Types:
• Replication

synchronise resources

• Round Robin
rotate through children for
uploading

• Load balance

• Compound resource
cache resource and
archive resource

Support4research – iRODS training C. Staiger

iRODS resources and replicas
• User can choose resource: iput -R <rescname> <file>
• User can create replicas: irepl -R <rescname> <irods path>

à User needs to:
• Know setup of the iRODS instance
• Understand the concept of replica
• Know how iRODS handles replicas

à Suitable for advanced users
- Chose storage medium according to special policies
- Chose suitable storage medium for application

Automatise and standardise the choice of resource as much as possible
in the iRODS rulebase (next part of the tutorial).

Support4research – iRODS training C. Staiger

irepl

iCAT – Zone 1

Logical path:
/zone1/home/<user>/file.txt

Metadata:
attr1; val1; unit1
attr2; val2; unit2

Resc2

iCAT entry for file.txt:

Resc1

/Vault1/home/<user>/file.txt

/Vault2/home/<user>/file.txt
ire

pl

Support4research – iRODS training C. Staiger

iRODS Federations

iCAT Rule
engine

iRODS server

iCAT Rule
engine

iRODS server

Federation

• The iCAT defines the iRODS zone
• Two independent iRODS zones, own rule engine and different rulebases
• Federation on system level
• iRODS admins give access to certain users
User
• Authentication at home iRODS zone (iinit)
• Access to federated zone

/otherIRODSzone/home/user#homeIRODSzone

Support4research – iRODS training C. Staiger

iCAT Rule
engine

iRODS server “aliceZone”

Today:
User Interface machine
Login: di4r-userX

Generally:
Lisa/cartesius

module load icommands

icommands

Upload, download ACLs, metadata

Optional: resources

Support4research – iRODS training C. Staiger

Training Setup

iCAT Rule
engine

iRODS server

iCAT Rule
engine

iRODS server

Federation

User Interface machine

aliceZone bobZone

10

- icommands
- Put, get and
synchronise data
- Execute rules

- Folder ‘exampleRules’
Login User Interface

ssh <uname>@<server>
Password:

iRODS aliceZone
<uname>
Password:

Support4research – iRODS training C. Staiger

Resources and Federations

https://tinyurl.com/iRODS-advanced-HandOut

Support4research – iRODS training C. Staiger

Data – metadata relations with
imv, icp and irepl

Support4research – iRODS training C. Staiger

irepl

iCAT – Zone 1

Logical path:
/zone1/home/<user>/file.txt

Metadata:
attr1; val1; unit1
attr2; val2; unit2

Resc2

iCAT entry for file.txt:

Resc1

/Vault1/home/<user>/file.txt

/Vault2/home/<user>/file.txt
ire

pl

Support4research – iRODS training C. Staiger

icp – in one zone

iCAT – Zone 1

Logical path:
/zone1/home/<user>/file1.txt

Metadata:
attr1; val1; unit1
attr2; val2; unit2

iCAT entry for file.txt:
Resc1

/Vault1/home/<user>/file1.txt

Logical path:
/zone1/home/<user>/file2.txt

Metadata:
Empty

/Vault1/home/<user>/file2.txt

ic
p icp

Support4research – iRODS training C. Staiger

icp/irsync – across zones
iCAT – Zone 1

Logical path:
/zone1/home/<user>/file1.txt

Metadata:
attr1; val1; unit1
attr2; val2; unit2

iCAT entry for file.txt:
Zone1:Resc1

/Z1_Vault1/home/<user>/file1.txt

/Z2_Vault1/home/<user>/file2.txt

icp

iCAT – Zone 2

Logical path:
/zone2/home/<user>/file1.txt

Metadata:
Empty

iCAT entry for file.txt:

Zone2:Resc1

ic
p

Support4research – iRODS training C. Staiger

imv
iCAT – Zone 1

Logical path:
/zone1/home/<user>/file.txt

/zone1/home/<user>/file_v1.txt

Metadata:
attr1; val1; unit1
attr2; val2; unit2

iCAT entry for file.txt:

Resc1

/Vault1/home/<user>/file.txt

/Vault1/home/<user>/file_v1.txt

im
v imv

Not possible to do an imv across Zones:
Metadata entry in Zone1 while data resides on resource in Zone 2

Support4research – iRODS training C. Staiger

Rules and micro services

Support4research – iRODS training C. Staiger

iRODS micro services
• Define actions on data, resources and users à atomic
• C++ functions, calling external libraries
• Used and combined in workflows/policies à iRODS rules

• Predefined microservices
http://docs.irods.org/4.1.10/doxygen

• Example: msiCollRsync à synchronises two iRODS collections
from different zones

• Own micro services:
• Written in C++
• Need to be installed on the iRODS server à root or iRODS

service account rights
• Example: Automatic metadata extraction from HDF5 files

Support4research – iRODS training C. Staiger

iRODS rules
• iRODS rule engine à built-in interpreter for own language
• Automatise data management tasks
• Standard set of pre-implemented rules constitutes default data

policies

• Trigger execution of rules by
• irule à User
• Delayed or scheduled execution à User & iRODS admin
• Actions and policy enforcement points extending and

overlaying the default rule base à iRODS admin

HelloWorld{
writeLine("stdout", "Hello *name!");

}
INPUT *name="World"
OUTPUT ruleExecOut, *name

Support4research – iRODS training C. Staiger

iRODS standard data policies
• Event hooks are triggered by actions

• E.g. put data (client interaction - iput)
• acPostProcForPut - Rule for post processing the put

operation.
acPostProcForPut {

msiSysChksumDataObj;
msiSysReplDataObj("demoResc","all"); }

• Policy enforcement points (PEPs) are executed by the rule
engine

pep_api_data_obj_put_post(*COMM, *DATAOBJINP,
*BUFFER, *PORTAL_OPR_OUT) {

acPostProcForPut; }

Support4research – iRODS training C. Staiger

Extending the standard core.re
• Predefined core.re and also pretty empty in standard setup

• Placeholder for all event hooks and PEPs
• Placeholder for own general data management rules

• Place your (carefully tested) rules directly into core.re
à bad idea

• Write an own policy.re and configure server
"re_rulebase_set":[{"filename":”policy”}, {"filename":"core”}]

à policy.re and core.re build the ruleset for
this iRODS instance

à Order matters

Support4research – iRODS training C. Staiger

Rules: Order matters
• No namespaces!
• First rule that matches (name and variables) will be executed
• Event hooks and PEPs follow the syntax of rules

Workflow for developing policies/rules

• Write a local rule as iRODS user à irule <file>
à Debugging

• Put rule on top of all rules in the configured rule set
à Does it still work?
à Which rules does it inhibit from being executed

• Bit by bit find the right spot for the rule in the rule base

Support4research – iRODS training C. Staiger

The Hierarchy

iRODS rules

iRODS server rule baseUser

Micro services

Rule engine(s)

Sys-admin/
iRODS admin

Support4research – iRODS training C. Staiger

Write your own data archiving
policy/rule

Thank you! Questions?

arthur.newton(at)surfsara.nl
christine.staiger(at)surfsara.nl

Special thanks to:

Manon van Eijden (SURFsara)
Jan Bot (SURFsara)

