Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
NearRealTimeCTDAS
CTDAS
Commits
6b5b4b0f
Commit
6b5b4b0f
authored
Jul 01, 2019
by
brunner
Browse files
just before canada
parent
30c6d24d
Changes
13
Show whitespace changes
Inline
Side-by-side
da/cosmo/base_optimizer.py
View file @
6b5b4b0f
...
@@ -80,8 +80,8 @@ class Optimizer(object):
...
@@ -80,8 +80,8 @@ class Optimizer(object):
# localization of obs
# localization of obs
self
.
may_localize
=
np
.
zeros
(
self
.
nobs
,
bool
)
self
.
may_localize
=
np
.
zeros
(
self
.
nobs
,
bool
)
# rejection of obs
# rejection of obs
#
self.may_reject = np.ones(self.nobs, bool)
self
.
may_reject
=
np
.
ones
(
self
.
nobs
,
bool
)
self
.
may_reject
=
np
.
zeros
(
self
.
nobs
,
bool
)
#
self.may_reject = np.zeros(self.nobs, bool)
# flags of obs
# flags of obs
self
.
flags
=
np
.
zeros
(
self
.
nobs
,
int
)
self
.
flags
=
np
.
zeros
(
self
.
nobs
,
int
)
# species type
# species type
...
@@ -315,6 +315,7 @@ class Optimizer(object):
...
@@ -315,6 +315,7 @@ class Optimizer(object):
for
n
in
range
(
self
.
nobs
):
for
n
in
range
(
self
.
nobs
):
# Screen for flagged observations (for instance site not found, or no sample written from model)
# Screen for flagged observations (for instance site not found, or no sample written from model)
if
self
.
flags
[
n
]
!=
0
:
if
self
.
flags
[
n
]
!=
0
:
logging
.
debug
(
'Skipping observation (%s,%i) because of flag value %d'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
self
.
flags
[
n
]))
logging
.
debug
(
'Skipping observation (%s,%i) because of flag value %d'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
self
.
flags
[
n
]))
continue
continue
...
@@ -324,7 +325,7 @@ class Optimizer(object):
...
@@ -324,7 +325,7 @@ class Optimizer(object):
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
res
=
self
.
obs
[
n
]
-
self
.
Hx
[
n
]
if
self
.
may_reject
[
n
]:
if
self
.
may_reject
[
n
]:
print
(
'may reject'
)
#
print('may reject')
threshold
=
self
.
rejection_threshold
*
np
.
sqrt
(
self
.
R
[
n
])
threshold
=
self
.
rejection_threshold
*
np
.
sqrt
(
self
.
R
[
n
])
if
np
.
abs
(
res
)
>
threshold
:
if
np
.
abs
(
res
)
>
threshold
:
logging
.
debug
(
'Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
res
,
threshold
))
logging
.
debug
(
'Rejecting observation (%s,%i) because residual (%f) exceeds threshold (%f)'
%
(
self
.
sitecode
[
n
],
self
.
obs_ids
[
n
],
res
,
threshold
))
...
@@ -346,23 +347,10 @@ class Optimizer(object):
...
@@ -346,23 +347,10 @@ class Optimizer(object):
alpha
=
np
.
double
(
1.0
)
/
(
np
.
double
(
1.0
)
+
np
.
sqrt
((
self
.
R
[
n
])
/
self
.
HPHR
[
n
]))
alpha
=
np
.
double
(
1.0
)
/
(
np
.
double
(
1.0
)
+
np
.
sqrt
((
self
.
R
[
n
])
/
self
.
HPHR
[
n
]))
# if all(self.x[:] + self.KG[:] * res >= 0.):
self
.
x
[:]
=
self
.
x
+
self
.
KG
[:]
*
res
self
.
x
[:]
=
self
.
x
+
self
.
KG
[:]
*
res
self
.
x
[
self
.
x
<
0.
]
=
0.
# cut off negative values, COSMO don't like negative fluxes # pavle
for
r
in
range
(
self
.
nmembers
):
for
r
in
range
(
self
.
nmembers
):
X_prime_temp
=
self
.
X_prime
[:,
r
]
-
alpha
*
self
.
KG
[:]
*
(
self
.
HX_prime
[
n
,
r
])
self
.
X_prime
[:,
r
]
=
self
.
X_prime
[:,
r
]
-
alpha
*
self
.
KG
[:]
*
(
self
.
HX_prime
[
n
,
r
])
X_prime_temp
[
X_prime_temp
+
self
.
x
<
0.
]
=
0.
# if all(self.X_prime[:, r] - alpha * self.KG[:] * (self.HX_prime[n, r]) + self.x[:] >= 0.):
self
.
X_prime
[:,
r
]
=
X_prime_temp
#self.X_prime[:, r] = self.X_prime[:, r] - alpha * self.KG[:] * (self.HX_prime[n, r])
# continue
# else:
# self.X_prime[:, r] = self.X_prime[:, r] - alpha * self.KG[:] * (self.HX_prime[n, r])
# for p in range(self.nparams):
# if self.X_prime[p, r]+self.x[p]<0.:
# self.X_prime[p, r]=0.
#WP !!!! Very important to first do all obervations from n=1 through the end, and only then update 1,...,n. The current observation
#WP !!!! Very important to first do all obervations from n=1 through the end, and only then update 1,...,n. The current observation
#WP should always be updated last because it features in the loop of the adjustments !!!!
#WP should always be updated last because it features in the loop of the adjustments !!!!
...
@@ -379,6 +367,7 @@ class Optimizer(object):
...
@@ -379,6 +367,7 @@ class Optimizer(object):
self
.
Hx
[
m
]
=
self
.
Hx
[
m
]
+
fac
*
res
self
.
Hx
[
m
]
=
self
.
Hx
[
m
]
+
fac
*
res
self
.
HX_prime
[
m
,
:]
=
self
.
HX_prime
[
m
,
:]
-
alpha
*
fac
*
self
.
HX_prime
[
n
,
:]
self
.
HX_prime
[
m
,
:]
=
self
.
HX_prime
[
m
,
:]
-
alpha
*
fac
*
self
.
HX_prime
[
n
,
:]
def
bulk_minimum_least_squares
(
self
):
def
bulk_minimum_least_squares
(
self
):
""" Make minimum least squares solution by solving matrix equations"""
""" Make minimum least squares solution by solving matrix equations"""
...
...
da/cosmo/covariances.py
View file @
6b5b4b0f
...
@@ -30,7 +30,8 @@ import numpy as np
...
@@ -30,7 +30,8 @@ import numpy as np
#from da.cosmo.statevector_uniform import StateVector, EnsembleMember
#from da.cosmo.statevector_uniform import StateVector, EnsembleMember
#from da.cosmo.statevector_read_from_output import StateVector, EnsembleMember
#from da.cosmo.statevector_read_from_output import StateVector, EnsembleMember
#from da.cosmo.statevector_mean import StateVector, EnsembleMember
#from da.cosmo.statevector_mean import StateVector, EnsembleMember
from
da.cosmo.statevector
import
StateVector
,
EnsembleMember
#from da.cosmo.statevector import StateVector, EnsembleMember
from
da.cosmo.statevector_mean
import
StateVector
,
EnsembleMember
import
da.tools.io4
as
io
import
da.tools.io4
as
io
...
...
da/cosmo/covariances_read_from_files.py
0 → 100755
View file @
6b5b4b0f
"""CarbonTracker Data Assimilation Shell (CTDAS) Copyright (C) 2017 Wouter Peters.
Users are recommended to contact the developers (wouter.peters@wur.nl) to receive
updates of the code. See also: http://www.carbontracker.eu.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
version 3. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>."""
#!/usr/bin/env python
# ct_statevector_tools.py
"""
Author : peters
Revision History:
File created on 28 Jul 2010.
"""
import
os
import
sys
sys
.
path
.
append
(
os
.
getcwd
())
import
logging
import
numpy
as
np
#from da.cosmo.statevector_uniform import StateVector, EnsembleMember
from
da.cosmo.statevector_read_from_output
import
StateVector
,
EnsembleMember
#from da.cosmo.statevector_mean import StateVector, EnsembleMember
import
da.tools.io4
as
io
identifier
=
'CarbonTracker Statevector '
version
=
'0.0'
################### Begin Class CO2StateVector ###################
class
CO2StateVector
(
StateVector
):
""" This is a StateVector object for CarbonTracker. It has a private method to make new ensemble members """
def
get_covariance
(
self
,
date
,
dacycle
):
""" Make a new ensemble from specified matrices, the attribute lag refers to the position in the state vector.
Note that lag=1 means an index of 0 in python, hence the notation lag-1 in the indexing below.
The argument is thus referring to the lagged state vector as [1,2,3,4,5,..., nlag]
0. Needleleaf Evergreen, Temperate
1. Needleleaf Evergreen, Boreal
2. Boardleaf Decidous, Temperate
3. Boardleaf Decidous, Boreal
4. Boardleaf Decidous Shrub, Temperate
5. Boardleaf Decidous Shrub, Boreal
6. C3 Arctic Grass
7. C3 non-Arctic Grass
8. C4 Grass
9. Crop
#10. None (removed)
"""
fullcov
=
np
.
zeros
(
shape
=
(
90
,
90
))
partcov
=
np
.
array
([
\
(
0.64
,
0.36
,
0.16
,
0.16
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.36
,
0.64
,
0.16
,
0.16
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.16
,
0.16
,
0.64
,
0.36
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.16
,
0.16
,
0.36
,
0.64
,
0.16
,
0.16
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.16
,
0.16
,
0.16
,
0.16
,
0.64
,
0.36
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.16
,
0.16
,
0.16
,
0.16
,
0.36
,
0.64
,
0.04
,
0.04
,
0.04
,
0.01
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.64
,
0.16
,
0.16
,
0.16
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.16
,
0.64
,
0.16
,
0.16
),
\
(
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.04
,
0.16
,
0.16
,
0.64
,
0.16
),
\
(
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.16
,
0.16
,
0.16
,
0.64
)
])
L_matrix
=
np
.
array
([
\
(
1.000
,
0.000
,
0.000
,
0.000
,
0.000
,
0.000
,
0.000
,
0.000
,
0.000
),
\
(
0.000
,
1.000
,
0.715
,
0.650
,
0.733
,
0.614
,
0.909
,
0.688
,
0.544
),
\
(
0.000
,
0.715
,
1.000
,
0.862
,
0.751
,
0.638
,
0.695
,
0.501
,
0.575
),
\
(
0.000
,
0.650
,
0.862
,
1.000
,
0.776
,
0.696
,
0.651
,
0.472
,
0.639
),
\
(
0.000
,
0.733
,
0.751
,
0.776
,
1.000
,
0.827
,
0.774
,
0.587
,
0.732
),
\
(
0.000
,
0.614
,
0.638
,
0.696
,
0.827
,
1.000
,
0.660
,
0.537
,
0.885
),
\
(
0.000
,
0.909
,
0.695
,
0.651
,
0.774
,
0.660
,
1.000
,
0.721
,
0.586
),
\
(
0.000
,
0.688
,
0.501
,
0.472
,
0.587
,
0.537
,
0.721
,
1.000
,
0.489
),
\
(
0.000
,
0.544
,
0.575
,
0.639
,
0.732
,
0.885
,
0.586
,
0.489
,
1.000
)
])
for
i
in
range
(
9
):
for
j
in
range
(
9
):
fullcov
[
i
*
10
:(
i
+
1
)
*
10
,
j
*
10
:(
j
+
1
)
*
10
]
=
partcov
*
L_matrix
[
i
,
j
]
# correl = np.array([ \
# (0.8, 0.6, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1), \
# (0.6, 0.8, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1), \
# (0.4, 0.4, 0.8, 0.6, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1), \
# (0.4, 0.4, 0.6, 0.8, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1), \
# (0.4, 0.4, 0.4, 0.4, 0.8, 0.6, 0.2, 0.2, 0.2, 0.1), \
# (0.4, 0.4, 0.4, 0.4, 0.6, 0.8, 0.2, 0.2, 0.2, 0.1), \
# (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.8, 0.4, 0.4, 0.4), \
#(0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.8, 0.4, 0.4), \
# (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.4, 0.8, 0.4), \
# (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.4, 0.8) ])
# fullcov = np.array([ \
# (1.00, 0.36, 0.16, 0.16, 0.16, 0.16, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.36, 1.00, 0.16, 0.16, 0.16, 0.16, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.16, 0.16, 1.00, 0.36, 0.16, 0.16, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.16, 0.16, 0.36, 1.00, 0.16, 0.16, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.16, 0.16, 0.16, 0.16, 1.00, 0.36, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.16, 0.16, 0.16, 0.16, 0.36, 1.00, 0.04, 0.04, 0.04, 0.01, 0.00), \
# (0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 1.00, 0.16, 0.16, 0.16, 0.00), \
#(0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.16, 1.00, 0.16, 0.16, 0.00), \
# (0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.16, 0.16, 1.00, 0.16, 0.00), \
# (0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.16, 0.16, 0.16, 1.00, 0.00), \
# # (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.e-10) ])
# (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00) ])
return
fullcov
def
read_from_legacy_file
(
self
,
filename
,
qual
=
'opt'
):
"""
:param filename: the full filename for the input NetCDF file
:param qual: a string indicating whether to read the 'prior' or 'opt'(imized) StateVector from file
:rtype: None
Read the StateVector information from a NetCDF file and put in a StateVector object
In principle the input file will have only one four datasets inside
called:
* `meanstate_prior`, dimensions [nlag, nparamaters]
* `ensemblestate_prior`, dimensions [nlag,nmembers, nparameters]
* `meanstate_opt`, dimensions [nlag, nparamaters]
* `ensemblestate_opt`, dimensions [nlag,nmembers, nparameters]
This NetCDF information can be written to file using
:meth:`~da.baseclasses.statevector.StateVector.write_to_file`
"""
f
=
io
.
ct_read
(
filename
,
'read'
)
for
n
in
range
(
self
.
nlag
):
if
qual
==
'opt'
:
meanstate
=
f
.
get_variable
(
'statevectormean_opt'
)
EnsembleMembers
=
f
.
get_variable
(
'statevectorensemble_opt'
)
elif
qual
==
'prior'
:
meanstate
=
f
.
get_variable
(
'statevectormean_prior'
)
EnsembleMembers
=
f
.
get_variable
(
'statevectorensemble_prior'
)
if
not
self
.
ensemble_members
[
n
]
==
[]:
self
.
ensemble_members
[
n
]
=
[]
logging
.
warning
(
'Existing ensemble for lag=%d was removed to make place for newly read data'
%
(
n
+
1
))
for
m
in
range
(
self
.
nmembers
):
newmember
=
EnsembleMember
(
m
)
newmember
.
param_values
=
EnsembleMembers
[
m
,
:].
flatten
()
+
meanstate
# add the mean to the deviations to hold the full parameter values
self
.
ensemble_members
[
n
].
append
(
newmember
)
f
.
close
()
logging
.
info
(
'Successfully read the State Vector from file (%s) '
%
filename
)
def
read_from_file_exceptsam
(
self
,
filename
,
qual
=
'opt'
):
"""
:param filename: the full filename for the input NetCDF file
:param qual: a string indicating whether to read the 'prior' or 'opt'(imized) StateVector from file
:rtype: None
Read the StateVector information from a NetCDF file and put in a StateVector object
In principle the input file will have only one four datasets inside
called:
* `meanstate_prior`, dimensions [nlag, nparamaters]
* `ensemblestate_prior`, dimensions [nlag,nmembers, nparameters]
* `meanstate_opt`, dimensions [nlag, nparamaters]
* `ensemblestate_opt`, dimensions [nlag,nmembers, nparameters]
This NetCDF information can be written to file using
:meth:`~da.baseclasses.statevector.StateVector.write_to_file`
"""
f
=
io
.
ct_read
(
filename
,
'read'
)
meanstate
=
f
.
get_variable
(
'statevectormean_'
+
qual
)
# meanstate[:,39:77] = 1
ensmembers
=
f
.
get_variable
(
'statevectorensemble_'
+
qual
)
f
.
close
()
for
n
in
range
(
self
.
nlag
):
if
not
self
.
ensemble_members
[
n
]
==
[]:
self
.
ensemble_members
[
n
]
=
[]
logging
.
warning
(
'Existing ensemble for lag=%d was removed to make place for newly read data'
%
(
n
+
1
))
for
m
in
range
(
self
.
nmembers
):
newmember
=
EnsembleMember
(
m
)
newmember
.
param_values
=
ensmembers
[
n
,
m
,
:].
flatten
()
+
meanstate
[
n
]
# add the mean to the deviations to hold the full parameter values
self
.
ensemble_members
[
n
].
append
(
newmember
)
logging
.
info
(
'Successfully read the State Vector from file (%s) '
%
filename
)
# logging.info('State Vector set to 1 for South American regions')
################### End Class CO2StateVector ###################
if
__name__
==
"__main__"
:
pass
da/cosmo/observationoperator_octe.py
View file @
6b5b4b0f
...
@@ -103,8 +103,7 @@ class ObservationOperator(object):
...
@@ -103,8 +103,7 @@ class ObservationOperator(object):
f_in
.
close
()
f_in
.
close
()
shape
=
(
self
.
forecast_nmembers
,
mdm
.
size
)
model_data
=
np
.
empty
(
shape
=
(
self
.
forecast_nmembers
,
mdm
.
size
))
# 3x7
model_data
=
np
.
empty
(
shape
=
shape
)
# 3x7
self
.
lambda_file
=
os
.
path
.
join
(
self
.
outputdir
,
'lambda.%s.nc'
%
self
.
dacycle
[
'time.sample.stamp'
])
self
.
lambda_file
=
os
.
path
.
join
(
self
.
outputdir
,
'lambda.%s.nc'
%
self
.
dacycle
[
'time.sample.stamp'
])
ofile
=
Dataset
(
self
.
lambda_file
,
mode
=
'w'
)
ofile
=
Dataset
(
self
.
lambda_file
,
mode
=
'w'
)
...
@@ -116,6 +115,7 @@ class ObservationOperator(object):
...
@@ -116,6 +115,7 @@ class ObservationOperator(object):
for
m
in
range
(
0
,
self
.
forecast_nmembers
):
for
m
in
range
(
0
,
self
.
forecast_nmembers
):
co2
[
m
,:]
=
members
[
m
].
param_values
co2
[
m
,:]
=
members
[
m
].
param_values
# co2[co2<0] = 0.
l
[:]
=
co2
l
[:]
=
co2
ofile
.
close
()
ofile
.
close
()
os
.
system
(
'cp '
+
self
.
lambda_file
+
' '
+
dacycle
[
'da.vprm'
]
+
'/lambdas.nc'
)
os
.
system
(
'cp '
+
self
.
lambda_file
+
' '
+
dacycle
[
'da.vprm'
]
+
'/lambdas.nc'
)
...
@@ -128,7 +128,7 @@ class ObservationOperator(object):
...
@@ -128,7 +128,7 @@ class ObservationOperator(object):
else
:
else
:
os
.
rename
(
dacycle
[
'dir.da_run'
]
+
"/"
+
absolute_start_time
+
"_"
+
str
(
starth
+
lag
*
168
)
+
"_"
+
str
(
endh
+
lag
*
168
),
dacycle
[
'dir.da_run'
]
+
"/non_opt_"
+
dacycle
[
'time.start'
].
strftime
(
'%Y%m%d%H'
)
+
"_"
+
str
(
starth
+
lag
*
168
)
+
"_"
+
str
(
endh
+
lag
*
168
))
os
.
rename
(
dacycle
[
'dir.da_run'
]
+
"/"
+
absolute_start_time
+
"_"
+
str
(
starth
+
lag
*
168
)
+
"_"
+
str
(
endh
+
lag
*
168
),
dacycle
[
'dir.da_run'
]
+
"/non_opt_"
+
dacycle
[
'time.start'
].
strftime
(
'%Y%m%d%H'
)
+
"_"
+
str
(
starth
+
lag
*
168
)
+
"_"
+
str
(
endh
+
lag
*
168
))
os
.
system
(
'python run_chain.py '
+
self
.
dacycle
[
'run.name'
]
+
' '
+
absolute_start_time_ch
+
' '
+
str
(
starth
+
lag
*
168
)
+
' '
+
str
(
endh
+
lag
*
168
)
+
' -j meteo icbc
emissions
int2lm post_int2lm octe online_vprm cosmo'
)
os
.
system
(
'python run_chain.py '
+
self
.
dacycle
[
'run.name'
]
+
' '
+
absolute_start_time_ch
+
' '
+
str
(
starth
+
lag
*
168
)
+
' '
+
str
(
endh
+
lag
*
168
)
+
' -j meteo icbc int2lm post_int2lm
oae
octe online_vprm cosmo'
)
logging
.
info
(
'COSMO done!'
)
logging
.
info
(
'COSMO done!'
)
os
.
chdir
(
dacycle
[
'dir.da_run'
])
os
.
chdir
(
dacycle
[
'dir.da_run'
])
...
@@ -191,10 +191,10 @@ class ObservationOperator(object):
...
@@ -191,10 +191,10 @@ class ObservationOperator(object):
co2_out_lhw
=
cosmo_out
+
'CO2_lhw_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_lhw
=
cosmo_out
+
'CO2_lhw_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_brm
=
cosmo_out
+
'CO2_brm_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_brm
=
cosmo_out
+
'CO2_brm_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_ssl
=
cosmo_out
+
'CO2_ssl_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_ssl
=
cosmo_out
+
'CO2_ssl_'
+
ens
+
'_'
+
dt
+
'.nc'
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A
_CH+CO2_A
)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.99_lat=46.54 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A
_CH,CO2_A
"
+
co2_in_fn
,
output
=
co2_out_jfj
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.99_lat=46.54 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A "
+
co2_in_fn
,
output
=
co2_out_jfj
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A
_CH+CO2_A
)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.40_lat=47.48 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A
_CH,CO2_A
"
+
co2_in_fn
,
output
=
co2_out_lhw
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.40_lat=47.48 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A "
+
co2_in_fn
,
output
=
co2_out_lhw
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A
_CH+CO2_A
)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.18_lat=47.19 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A
_CH,CO2_A
"
+
co2_in_fn
,
output
=
co2_out_brm
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.18_lat=47.19 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A "
+
co2_in_fn
,
output
=
co2_out_brm
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A
_CH+CO2_A
)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.92_lat=47.92 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A
_CH,CO2_A
"
+
co2_in_fn
,
output
=
co2_out_ssl
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.92_lat=47.92 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A "
+
co2_in_fn
,
output
=
co2_out_ssl
)
files2cat_jfj
.
append
(
co2_out_jfj
)
files2cat_jfj
.
append
(
co2_out_jfj
)
files2cat_lhw
.
append
(
co2_out_lhw
)
files2cat_lhw
.
append
(
co2_out_lhw
)
files2cat_brm
.
append
(
co2_out_brm
)
files2cat_brm
.
append
(
co2_out_brm
)
...
...
da/cosmo/observationoperator_read_from_files.py
0 → 100755
View file @
6b5b4b0f
#!/usr/bin/env python
# model.py
import
logging
import
os
import
sys
import
subprocess
import
da.cosmo.io4
as
io
import
numpy
as
np
from
netCDF4
import
Dataset
from
datetime
import
datetime
,
timedelta
from
dateutil
import
rrule
from
cdo
import
*
from
.
import
site_height
from
da.cosmo.icbc4ctdas
import
ct
from
itertools
import
repeat
from
multiprocessing
import
Pool
from
da.tools.general
import
to_datetime
identifier
=
'ObservationOperator'
version
=
'10'
cdo
=
Cdo
()
################### Begin Class ObservationOperator ###################
class
ObservationOperator
(
object
):
def
__init__
(
self
,
dacycle
=
None
):
self
.
ID
=
identifier
self
.
version
=
version
self
.
restart_filelist
=
[]
self
.
output_filelist
=
[]
self
.
outputdir
=
None
# Needed for opening the samples.nc files created
logging
.
info
(
'Observation Operator object initialized: %s'
%
self
.
ID
)
if
dacycle
!=
None
:
self
.
dacycle
=
dacycle
else
:
self
.
dacycle
=
{}
def
get_initial_data
(
self
):
""" This method places all initial data needed by an ObservationOperator in the proper folder for the model """
def
setup
(
self
,
dacycle
):
""" Perform all steps necessary to start the observation operator through a simple Run() call """
self
.
dacycle
=
dacycle
self
.
outputdir
=
dacycle
[
'dir.output'
]
def
prepare_run
(
self
):
""" Prepare the running of the actual forecast model, for example compile code """
# Define the name of the file that will contain the modeled output of each observation
self
.
simulated_file
=
os
.
path
.
join
(
self
.
outputdir
,
'samples_simulated.%s.nc'
%
self
.
dacycle
[
'time.sample.stamp'
])
self
.
forecast_nmembers
=
int
(
self
.
dacycle
[
'da.optimizer.nmembers'
])
def
run
(
self
,
lag
,
dacycle
,
statevector
,
advance
=
False
):
members
=
statevector
.
ensemble_members
[
lag
]
self
.
forecast_nmembers
=
int
(
self
.
dacycle
[
'da.optimizer.nmembers'
])
self
.
nparams
=
int
(
self
.
dacycle
[
'nparameters'
])
absolute_start_time
=
str
((
to_datetime
(
dacycle
[
'abs.time.start'
])).
strftime
(
'%Y%m%d%H'
))
absolute_start_time_ch
=
str
((
to_datetime
(
dacycle
[
'abs.time.start'
])).
strftime
(
'%Y-%m-%d'
))
starth
=
abs
((
to_datetime
(
dacycle
[
'abs.time.start'
])
-
dacycle
[
'time.start'
]).
days
)
*
24
endh
=
abs
((
to_datetime
(
dacycle
[
'abs.time.start'
])
-
dacycle
[
'time.finish'
]).
days
)
*
24
f
=
io
.
CT_CDF
(
self
.
simulated_file
,
method
=
'create'
)
logging
.
debug
(
'Creating new simulated observation file in ObservationOperator (%s)'
%
self
.
simulated_file
)
dimid
=
f
.
createDimension
(
'obs_num'
,
size
=
None
)
dimid
=
(
'obs_num'
,)
savedict
=
io
.
std_savedict
.
copy
()
savedict
[
'name'
]
=
"obs_num"
savedict
[
'dtype'
]
=
"int"
savedict
[
'long_name'
]
=
"Unique_Dataset_observation_index_number"
savedict
[
'units'
]
=
""
savedict
[
'dims'
]
=
dimid
savedict
[
'comment'
]
=
"Unique index number within this dataset ranging from 0 to UNLIMITED."
f
.
add_data
(
savedict
,
nsets
=
0
)
dimmember
=
f
.
createDimension
(
'nmembers'
,
size
=
self
.
forecast_nmembers
)
dimmember
=
(
'nmembers'
,)
savedict
=
io
.
std_savedict
.
copy
()
savedict
[
'name'
]
=
"flask"
savedict
[
'dtype'
]
=
"float"
savedict
[
'long_name'
]
=
"mole_fraction_of_trace_gas_in_dry_air"
savedict
[
'units'
]
=
"ppm"
savedict
[
'dims'
]
=
dimid
+
dimmember
savedict
[
'comment'
]
=
"Simulated model value created by COSMO"
f
.
add_data
(
savedict
,
nsets
=
0
)
# Open file with x,y,z,t of model samples that need to be sampled
f_in
=
io
.
ct_read
(
self
.
dacycle
[
'ObsOperator.inputfile'
],
method
=
'read'
)
# Get simulated values and ID
ids
=
f_in
.
get_variable
(
'obs_num'
)
obs
=
f_in
.
get_variable
(
'observed'
)
mdm
=
f_in
.
get_variable
(
'modeldatamismatch'
)
f_in
.
close
()
shape
=
(
self
.
forecast_nmembers
,
mdm
.
size
)
model_data
=
np
.
empty
(
shape
=
shape
)
# 3x7
self
.
lambda_file
=
os
.
path
.
join
(
self
.
outputdir
,
'lambda.%s.nc'
%
self
.
dacycle
[
'time.sample.stamp'
])
ofile
=
Dataset
(
self
.
lambda_file
,
mode
=
'w'
)
opar
=
ofile
.
createDimension
(
'nparam'
,
self
.
nparams
)
omem
=
ofile
.
createDimension
(
'nensembles'
,
self
.
forecast_nmembers
)
#len(members.nmembers))
l
=
ofile
.
createVariable
(
'lambda'
,
np
.
float32
,
(
'nensembles'
,
'nparam'
),
fill_value
=-
999.99
)
co2
=
np
.
empty
(
shape
=
(
self
.
forecast_nmembers
,
self
.
nparams
))
for
m
in
range
(
0
,
self
.
forecast_nmembers
):
co2
[
m
,:]
=
members
[
m
].
param_values
l
[:]
=
co2
ofile
.
close
()
os
.
system
(
'cp '
+
self
.
lambda_file
+
' '
+
dacycle
[
'da.vprm'
]
+
'/lambdas.nc'
)
# os.chdir(dacycle['dir.da_run'])
#
# args = [
# (dacycle, starth+168*lag, endh+168*lag-1, n)
# for n in range(1,self.forecast_nmembers+1)
# ]
#
# with Pool(self.forecast_nmembers) as pool:
# pool.starmap(self.extract_model_data, args)
#
for
i
in
range
(
0
,
self
.
forecast_nmembers
):
idx
=
str
(
i
+
1
).
zfill
(
3
)
cosmo_file
=
os
.
path
.
join
(
'/store/empa/em05/parsenov/cosmo_data/real/model_'
+
idx
+
'_%s.nc'
%
dacycle
[
'time.sample.stamp'
])
ifile
=
Dataset
(
cosmo_file
,
mode
=
'r'
)
model_data
[
i
,:]
=
(
np
.
squeeze
(
ifile
.
variables
[
'CO2'
][:])
*
29.
/
44.01
)
*
1E6
# in ppm
ifile
.
close
()
for
j
,
data
in
enumerate
(
zip
(
ids
,
obs
,
mdm
)):
f
.
variables
[
'obs_num'
][
j
]
=
data
[
0
]
f
.
variables
[
'flask'
][
j
,:]
=
model_data
[:,
j
]
f
.
close
()
logging
.
info
(
'ObservationOperator finished successfully, output file written (%s)'
%
self
.
simulated_file
)
def
run_forecast_model
(
self
,
lag
,
dacycle
,
statevector
,
advance
):
self
.
prepare_run
()
self
.
run
(
lag
,
dacycle
,
statevector
,
advance
)
def
extract_model_data
(
self
,
dacycle
,
hstart
,
hstop
,
ensnum
):
self
.
dacycle
=
dacycle
time_stamp
=
dacycle
[
'time.sample.stamp'
]
abs_start_time
=
str
((
to_datetime
(
dacycle
[
'abs.time.start'
])).
strftime
(
'%Y%m%d%H'
))
cosmo_out
=
dacycle
[
'dir.da_run'
]
+
"/"
+
abs_start_time
+
"_"
+
str
(
hstart
)
+
"_"
+
str
(
hstop
+
1
)
+
"/cosmo/output/"
hhl_cosmo_out
=
dacycle
[
'dir.da_run'
]
+
"/"
+
abs_start_time
+
"_0_168/cosmo/output/"
cosmo_save
=
"/store/empa/em05/parsenov/cosmo_data/"
hhl_fn
=
hhl_cosmo_out
+
'lffd'
+
abs_start_time
+
'c.nc'
ens
=
str
(
ensnum
).
zfill
(
3
)
files2cat_jfj
=
[]
files2cat_lhw
=
[]
files2cat_brm
=
[]
files2cat_ssl
=
[]
if
ens
==
"001"
:
cdo
.
selname
(
"HHL"
,
input
=
hhl_fn
,
output
=
cosmo_out
+
"hhl.nc"
)
cdo
.
remapnn
(
"lon=7.99_lat=46.54,"
,
input
=
cosmo_out
+
"hhl.nc"
,
output
=
cosmo_out
+
"hhl_jfj.nc"
)
cdo
.
remapnn
(
"lon=8.40_lat=47.48,"
,
input
=
cosmo_out
+
"hhl.nc"
,
output
=
cosmo_out
+
"hhl_lhw.nc"
)
cdo
.
remapnn
(
"lon=8.18_lat=47.19,"
,
input
=
cosmo_out
+
"hhl.nc"
,
output
=
cosmo_out
+
"hhl_brm.nc"
)
cdo
.
remapnn
(
"lon=7.92_lat=47.92,"
,
input
=
cosmo_out
+
"hhl.nc"
,
output
=
cosmo_out
+
"hhl_ssl.nc"
)
for
dt
in
rrule
.
rrule
(
rrule
.
HOURLY
,
dtstart
=
to_datetime
(
dacycle
[
'abs.time.start'
])
+
timedelta
(
hours
=
hstart
),
until
=
to_datetime
(
dacycle
[
'abs.time.start'
])
+
timedelta
(
hours
=
hstop
)):
dt
=
dt
.
strftime
(
'%Y%m%d%H'
)
if
ens
==
"001"
:
logging
.
info
(
'Extracting output for time %s'
%
(
str
(
dt
)))
co2_in_fn
=
cosmo_out
+
'lffd'
+
dt
+
'.nc'
co2_out_jfj
=
cosmo_out
+
'CO2_jfj_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_lhw
=
cosmo_out
+
'CO2_lhw_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_brm
=
cosmo_out
+
'CO2_brm_'
+
ens
+
'_'
+
dt
+
'.nc'
co2_out_ssl
=
cosmo_out
+
'CO2_ssl_'
+
ens
+
'_'
+
dt
+
'.nc'
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A_CH+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.99_lat=46.54 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A_CH,CO2_A "
+
co2_in_fn
,
output
=
co2_out_jfj
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A_CH+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.40_lat=47.48 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A_CH,CO2_A "
+
co2_in_fn
,
output
=
co2_out_lhw
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A_CH+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=8.18_lat=47.19 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A_CH,CO2_A "
+
co2_in_fn
,
output
=
co2_out_brm
)
cdo
.
expr
(
"'CO2=(CO2_BG"
+
ens
+
"-CO2_GPP"
+
ens
+
"+CO2_RA"
+
ens
+
"+CO2_A_CH+CO2_A)/(1.-QV)'"
,
input
=
"-remapnn,lon=7.92_lat=47.92 -selname,QV,CO2_BG"
+
ens
+
",CO2_GPP"
+
ens
+
",CO2_RA"
+
ens
+
",CO2_A_CH,CO2_A "
+
co2_in_fn
,
output
=
co2_out_ssl
)
files2cat_jfj
.
append
(
co2_out_jfj
)
files2cat_lhw
.
append
(
co2_out_lhw
)
files2cat_brm
.
append
(
co2_out_brm
)
files2cat_ssl
.
append
(
co2_out_ssl
)
cdo
.
cat
(
input
=
files2cat_jfj
,
output
=
cosmo_out
+
"CO2_jfj_"
+
ens
+
"_"
+
time_stamp
+
".nc"
)
cdo
.
cat
(
input
=
files2cat_lhw
,
output
=
cosmo_out
+
"CO2_lhw_"
+
ens
+
"_"
+
time_stamp
+
".nc"
)
cdo
.
cat
(
input
=
files2cat_brm
,
output
=
cosmo_out
+
"CO2_brm_"
+
ens
+
"_"
+
time_stamp
+
".nc"
)
cdo
.
cat
(
input
=
files2cat_ssl
,
output
=
cosmo_out
+
"CO2_ssl_"
+
ens
+
"_"
+
time_stamp
+
".nc"
)
sites
=
(
"lhw"
,
"brm"
,
"jfj"
,
"ssl"
)
for
s
,
ss
in
enumerate
(
sites
):
site_height
.
main
(
cosmo_out
,
str
(
ens
),
ss
,
time_stamp
)
cdo
.
intlevel
(
"860"
,
input
=
cosmo_out
+
"CO2_60lev_"
+
ens
+
"_lhw_"
+
time_stamp
+
".nc"
,
output
=
cosmo_out
+
"modelled_"
+
ens
+
"_lhw_"
+
time_stamp
+
".nc"
)
cdo
.
intlevel
(
"1009"
,
input
=
cosmo_out
+
"CO2_60lev_"
+
ens
+
"_brm_"
+
time_stamp
+
".nc"
,
output
=
cosmo_out
+
"modelled_"
+
ens
+
"_brm_"
+
time_stamp
+
".nc"
)
cdo
.
intlevel
(
"3580"
,
input
=
cosmo_out
+
"CO2_60lev_"
+
ens
+
"_jfj_"
+
time_stamp
+
".nc"
,
output
=
cosmo_out
+
"modelled_"
+
ens
+
"_jfj_"
+
time_stamp
+
".nc"
)
cdo
.
intlevel
(
"1205"
,
input
=
cosmo_out
+
"CO2_60lev_"
+
ens
+
"_ssl_"
+
time_stamp
+
".nc"
,
output
=
cosmo_out
+
"modelled_"
+
ens
+
"_ssl_"
+
time_stamp
+
".nc"
)
cdo
.
cat
(
input
=
cosmo_out
+
"modelled_"
+
ens
+
"_brm_"
+
time_stamp
+
".nc "
+
cosmo_out
+
"modelled_"
+
ens
+
"_jfj_"
+
time_stamp
+
".nc "
+
cosmo_out
+
"modelled_"
+
ens
+
"_lhw_"
+
time_stamp
+
".nc "
+
cosmo_out
+
"modelled_"
+
ens
+
"_ssl_"
+
time_stamp
+
".nc "
,
output
=
cosmo_save
+
"model_"
+
ens
+
"_"
+
time_stamp
+
".nc"
)