observationoperator.py 12.7 KB
Newer Older
brunner's avatar
brunner committed
1
2
3
4
#!/usr/bin/env python
# model.py

import logging
brunner's avatar
brunner committed
5
6
7
import os
import sys
import subprocess
brunner's avatar
brunner committed
8
import da.cosmo.io4 as io
brunner's avatar
brunner committed
9
10
11
12
13
import numpy as np
from netCDF4 import Dataset
from datetime import datetime, timedelta
from dateutil import rrule
from cdo import *
brunner's avatar
brunner committed
14
from . import site_height
brunner's avatar
brunner committed
15
from da.cosmo.icbc4ctdas import ct
brunner's avatar
brunner committed
16
17
from itertools import repeat
from multiprocessing import Pool
brunner's avatar
brunner committed
18
from da.tools.general import to_datetime
brunner's avatar
brunner committed
19
20
21

identifier = 'ObservationOperator'
version = '10'
brunner's avatar
brunner committed
22

brunner's avatar
brunner committed
23
24
cdo = Cdo()

brunner's avatar
brunner committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
################### Begin Class ObservationOperator ###################
class ObservationOperator(object):
    def __init__(self, dacycle=None):
        self.ID = identifier
        self.version = version
        self.restart_filelist = []
        self.output_filelist = []
        self.outputdir = None # Needed for opening the samples.nc files created 

        logging.info('Observation Operator object initialized: %s' % self.ID)

        if dacycle != None:
            self.dacycle = dacycle
        else:
            self.dacycle = {}

    
    def get_initial_data(self):
        """ This method places all initial data needed by an ObservationOperator in the proper folder for the model """

    def setup(self,dacycle):
        """ Perform all steps necessary to start the observation operator through a simple Run() call """

        self.dacycle = dacycle
        self.outputdir = dacycle['dir.output']

    def prepare_run(self):
        """ Prepare the running of the actual forecast model, for example compile code """

	# Define the name of the file that will contain the modeled output of each observation

        self.simulated_file = os.path.join(self.outputdir, 'samples_simulated.%s.nc' % self.dacycle['time.sample.stamp'])
        self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])

brunner's avatar
brunner committed
59
60
    def run(self,lag,dacycle,statevector):
        members = statevector.ensemble_members[lag]
brunner's avatar
brunner committed
61
        absolute_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y-%m-%d'))
brunner's avatar
brunner committed
62
63
64
        starth = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.start']).days)*24
        endh = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.finish']).days)*24

brunner's avatar
brunner committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        f = io.CT_CDF(self.simulated_file, method='create')
        logging.debug('Creating new simulated observation file in ObservationOperator (%s)' % self.simulated_file)
	
        dimid = f.createDimension('obs_num', size=None)
        dimid = ('obs_num',)
        savedict = io.std_savedict.copy() 
        savedict['name'] = "obs_num"
        savedict['dtype'] = "int"
        savedict['long_name'] = "Unique_Dataset_observation_index_number"
        savedict['units'] = ""
        savedict['dims'] = dimid
        savedict['comment'] = "Unique index number within this dataset ranging from 0 to UNLIMITED."
        f.add_data(savedict,nsets=0)

        dimmember = f.createDimension('nmembers', size=self.forecast_nmembers)
        dimmember = ('nmembers',)
        savedict = io.std_savedict.copy() 
        savedict['name'] = "flask"
        savedict['dtype'] = "float"
brunner's avatar
brunner committed
84
85
        savedict['long_name'] = "mole_fraction_of_trace_gas_in_dry_air"
        savedict['units'] = "ppm"
brunner's avatar
brunner committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        savedict['dims'] = dimid + dimmember
        savedict['comment'] = "Simulated model value created by COSMO"
        f.add_data(savedict,nsets=0)

	# Open file with x,y,z,t of model samples that need to be sampled

        f_in = io.ct_read(self.dacycle['ObsOperator.inputfile'],method='read') 

	# Get simulated values and ID

        ids = f_in.get_variable('obs_num')
        obs = f_in.get_variable('observed')
        mdm = f_in.get_variable('modeldatamismatch')

        f_in.close()

        shape = (self.forecast_nmembers,mdm.size)
        model_data=np.empty(shape=shape)   # 3x7

#        self.obspack_dir = dacycle.dasystem['obspack.input.dir']

#        infile = os.path.join(self.obspack_dir, 'summary', '%s_dataset_summary.txt' % (self.obspack_id,))
#        infile = "/store/empa/em05/parsenov/obspack/summary/obspack_co2_1_GLOBALVIEWplus_v3.2_2017-11-02_dataset_summary.txt"
#        f = open(infile, 'r')
#        lines = f.readlines()
#        f.close()
#        ncfilelist = []

#        for line in lines:
#            if not line.startswith('# dataset:'): continue

#            items = line.split(':')
#            ncfile = items[1].strip()

#            ncfilelist += [ncfile]

#        for ncfile in ncfilelist:
#            infile = os.path.join(ncfile + '.nc')

brunner's avatar
brunner committed
125
126
 # UNCOMMENT FROM HERE

brunner's avatar
brunner committed
127
128
        co2_bg = np.empty(self.forecast_nmembers)

brunner's avatar
brunner committed
129
        for dt in rrule.rrule(rrule.HOURLY, dtstart=dacycle['time.start']+timedelta(hours=24*lag*int(dacycle['time.cycle'])), until=dacycle['time.start']+timedelta(hours=(lag+1)*24*int(dacycle['time.cycle']))):
brunner's avatar
brunner committed
130
            logging.info('Multiplying emissions with parameters for lag %d, date %s' % (lag, dt.strftime('%Y%m%d%H')))
brunner's avatar
brunner committed
131
            for ens in range(0,self.forecast_nmembers):
brunner's avatar
brunner committed
132
                dthh = dt.strftime('%H')
brunner's avatar
brunner committed
133
                co2_bg[ens] = members[ens].param_values[-1]
brunner's avatar
brunner committed
134
                ens = str(ens).zfill(3)
brunner's avatar
brunner committed
135
136
                cdo.setunit("'kg m-2 s-1' -expr,GPP_"+ens+"_F=CO2_GPP_F*parametermap -merge "+os.path.join(dacycle['da.bio.input'], 'gpp_%s.nc' % dt.strftime('%Y%m%d%H')), input = os.path.join(dacycle['restartmap.dir'],"parameters_gpp_lag"+str(lag)+"."+ens+".nc"), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_"+ens+"_%s.nc" % dt.strftime('%Y%m%d%H')))
                cdo.setunit("'kg m-2 s-1' -expr,RESP_"+ens+"_F=CO2_RESP_F*parametermap -merge "+os.path.join(dacycle['da.bio.input'], 'ra_%s.nc' % dt.strftime('%Y%m%d%H')), input = os.path.join(dacycle['restartmap.dir'],"parameters_resp_lag"+str(lag)+"."+ens+".nc"), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_"+ens+"_%s.nc" % dt.strftime('%Y%m%d%H')))
brunner's avatar
brunner committed
137
            logging.info('Background CO2 params are (%s)' % co2_bg)
brunner's avatar
brunner committed
138
            if dthh=='00':
brunner's avatar
brunner committed
139
                ct(dt.strftime('%Y%m%d'), co2_bg)
brunner's avatar
brunner committed
140

brunner's avatar
brunner committed
141
142
            cdo.merge(input = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "gpp_%s.nc" % dt.strftime('%Y%m%d%H')))
            cdo.merge(input = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bio.input'], 'ensemble', "ra_%s.nc" % dt.strftime('%Y%m%d%H')))
brunner's avatar
brunner committed
143
144
#            if dthh=='00' or dthh=='03' or dthh=='06' or dthh=='09' or dthh=='12' or dthh=='15' or dthh=='18' or dthh=='21':
 #               cdo.merge(input = os.path.join(dacycle['da.bg.input'], 'ensemble', "ct_???_%s.nc" % dt.strftime('%Y%m%d%H')), output = os.path.join(dacycle['da.bg.input'], 'ensemble', "ct_%s.nc" % dt.strftime('%Y%m%d%H')))
brunner's avatar
brunner committed
145

brunner's avatar
brunner committed
146
        os.chdir(dacycle['da.obsoperator.home'])
brunner's avatar
brunner committed
147

brunner's avatar
brunner committed
148
149
        if os.path.exists("/scratch/snx3000/parsenov/ctdas/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168)+"/cosmo/output/"):
            os.rename("/scratch/snx3000/parsenov/ctdas/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168), "/scratch/snx3000/parsenov/ctdas/non_opt_"+dacycle['time.start'].strftime('%Y%m%d%H')+"_"+str(starth+lag*168)+"_"+str(endh+lag*168))
brunner's avatar
brunner committed
150

brunner's avatar
brunner committed
151
        os.system('python run_chain.py ctdas '+absolute_start_time+' '+str(starth+lag*168)+' '+str(endh+lag*168)+' -j meteo icbc emissions biofluxes int2lm post_int2lm cosmo')
brunner's avatar
brunner committed
152
        os.chdir(dacycle['dir.da_run'])
brunner's avatar
brunner committed
153
154
155
156
157

        args = [
            (dacycle, hstart, hstop, self.forecast_nmembers)
            for dacycle, (hstart, hstop), self.forecast_nmembers
            in zip(repeat(dacycle),
brunner's avatar
brunner committed
158
                [(starth+168*lag,endh+168*lag-1)],
brunner's avatar
brunner committed
159
160
161
                repeat(self.forecast_nmembers))
        ]

brunner's avatar
brunner committed
162
163
        with Pool(3) as pool:
            pool.starmap(self.extract_model_data, args)
brunner's avatar
brunner committed
164
165

        for i in range(0,self.forecast_nmembers):
brunner's avatar
brunner committed
166
            idx = str(i).zfill(3)
brunner's avatar
brunner committed
167
            cosmo_file = os.path.join('/store/empa/em05/parsenov/cosmo_data/model_'+idx+'_%s.nc' % dacycle['time.sample.stamp'])
brunner's avatar
brunner committed
168
            ifile = Dataset(cosmo_file, mode='r')
brunner's avatar
brunner committed
169
            model_data[i,:] = (np.squeeze(ifile.variables['CO2'][:])*29./44.01)*1E6   # in ppm
brunner's avatar
brunner committed
170
171
172
173
174
175
176
177
178
179
180
            ifile.close()

        for j,data in enumerate(zip(ids,obs,mdm)):
            f.variables['obs_num'][j] = data[0]		
            f.variables['flask'][j,:] = model_data[:,j]
        f.close()
#### WARNING ACHTUNG PAZNJA POZOR VNEMANIE data[2] is model data mismatch (=1000) by default in tools/io4.py!!! pavle


        logging.info('ObservationOperator finished successfully, output file written (%s)' % self.simulated_file)

brunner's avatar
brunner committed
181
    def run_forecast_model(self, lag, dacycle, statevector):
brunner's avatar
brunner committed
182
        self.prepare_run()
brunner's avatar
brunner committed
183
        self.run(lag, dacycle, statevector)
brunner's avatar
brunner committed
184

brunner's avatar
brunner committed
185
    def extract_model_data(self,dacycle,hstart,hstop,ensnum):
brunner's avatar
brunner committed
186

brunner's avatar
brunner committed
187
        self.dacycle = dacycle
brunner's avatar
brunner committed
188
189
     #   time_stamp = str((dacycle['time.start']+timedelta(hours=hstart)).strftime('%Y%m%d%H'))+'_'+str((dacycle['time.start']+timedelta(hours=hstop)).strftime('%Y%m%d%H'))
        time_stamp = dacycle['time.sample.stamp']
brunner's avatar
brunner committed
190
        abs_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y%m%d%H'))
brunner's avatar
brunner committed
191

brunner's avatar
brunner committed
192
193
        cosmo_out = "/scratch/snx3000/parsenov/ctdas/"+abs_start_time+"_"+str(hstart)+"_"+str(hstop+1)+"/cosmo/output/"
        hhl_cosmo_out = "/scratch/snx3000/parsenov/ctdas/"+abs_start_time+"_0_168/cosmo/output/"
brunner's avatar
brunner committed
194
        cosmo_save = "/store/empa/em05/parsenov/cosmo_data/"
brunner's avatar
brunner committed
195
        hhl_fn = hhl_cosmo_out+'lffd'+abs_start_time+'c.nc'
brunner's avatar
brunner committed
196
197
198
199
        cdo.selname("HHL", input = hhl_fn, output = cosmo_out+"hhl.nc")

        for ens in range(0,ensnum):
            ens = str(ens).zfill(3)
brunner's avatar
brunner committed
200
            files2cat=[]
brunner's avatar
brunner committed
201
            for dt in rrule.rrule(rrule.HOURLY, dtstart=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstart), until=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstop)):
brunner's avatar
brunner committed
202
                dt=dt.strftime('%Y%m%d%H')
brunner's avatar
brunner committed
203
                logging.info('Extracting output for ens %s, time %s' % (str(ens),str(dt)))
brunner's avatar
brunner committed
204
205
                co2_in_fn = cosmo_out+'lffd'+dt+'.nc'
                co2_out_fn = cosmo_out+'CO2_'+ens+'_'+dt+'.nc'
brunner's avatar
brunner committed
206
                cdo.expr("'CO2=(BG_"+ens+"-GPP_"+ens+"+RESP_"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-selname,QV,BG_"+ens+",GPP_"+ens+",RESP_"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_fn)
brunner's avatar
brunner committed
207
208
209
210
                files2cat.append(co2_out_fn)

            cdo.cat(input = files2cat, output = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc")

brunner's avatar
brunner committed
211
212
            cdo.remapnn("lon=7.99_lat=46.54,", input = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc", output = cosmo_out+"CO2_jfj_"+ens+"_"+time_stamp+".nc")
            cdo.remapnn("lon=7.99_lat=46.54,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_jfj.nc")
brunner's avatar
brunner committed
213

brunner's avatar
brunner committed
214
215
            cdo.remapnn("lon=8.40_lat=47.48,", input = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc", output = cosmo_out+"CO2_lhw_"+ens+"_"+time_stamp+".nc")
            cdo.remapnn("lon=8.40_lat=47.48,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_lhw.nc")
brunner's avatar
brunner committed
216

brunner's avatar
brunner committed
217
218
            cdo.remapnn("lon=8.18_lat=47.19,", input = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc", output = cosmo_out+"CO2_brm_"+ens+"_"+time_stamp+".nc")
            cdo.remapnn("lon=8.18_lat=47.19,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_brm.nc")
brunner's avatar
brunner committed
219

brunner's avatar
brunner committed
220
221
            cdo.remapnn("lon=7.92_lat=47.92,", input = cosmo_out+"CO2_"+ens+"_"+time_stamp+".nc", output = cosmo_out+"CO2_ssl_"+ens+"_"+time_stamp+".nc")
            cdo.remapnn("lon=7.92_lat=47.92,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_ssl.nc")
brunner's avatar
brunner committed
222

brunner's avatar
brunner committed
223
            sites = ("lhw","brm","jfj","ssl")
brunner's avatar
brunner committed
224
225
226
227
228
229
230
231
232
            for s,ss in enumerate(sites):
                site_height.main(cosmo_out, str(ens), ss, time_stamp)

            cdo.intlevel("860", input = cosmo_out+"CO2_60lev_"+ens+"_lhw_"+time_stamp+".nc", output = cosmo_out+"/modelled_"+ens+"_lhw_"+time_stamp+".nc")
            cdo.intlevel("797", input = cosmo_out+"CO2_60lev_"+ens+"_brm_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc")
            cdo.intlevel("3580", input = cosmo_out+"CO2_60lev_"+ens+"_jfj_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc")
            cdo.intlevel("1205", input = cosmo_out+"CO2_60lev_"+ens+"_ssl_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc")

            cdo.cat(input = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_lhw_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc ", output = cosmo_save+"model_"+ens+"_"+time_stamp+".nc")
brunner's avatar
brunner committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246


################### End Class ObservationOperator ###################

class RandomizerObservationOperator(ObservationOperator):
    """ This class holds methods and variables that are needed to use a random number generated as substitute
        for a true observation operator. It takes observations and returns values for each obs, with a specified 
        amount of white noise added 
    """



if __name__ == "__main__":
    pass