observationoperator_octe.py 11.7 KB
Newer Older
brunner's avatar
octe  
brunner committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python
# model.py

import logging
import os
import sys
import subprocess
import da.cosmo.io4 as io
import numpy as np
from netCDF4 import Dataset
from datetime import datetime, timedelta
from dateutil import rrule
from cdo import *
from . import site_height
from da.cosmo.icbc4ctdas import ct
from itertools import repeat
from multiprocessing import Pool
from da.tools.general import to_datetime

identifier = 'ObservationOperator'
version = '10'

cdo = Cdo()

################### Begin Class ObservationOperator ###################
class ObservationOperator(object):
    def __init__(self, dacycle=None):
        self.ID = identifier
        self.version = version
        self.restart_filelist = []
        self.output_filelist = []
        self.outputdir = None # Needed for opening the samples.nc files created 

        logging.info('Observation Operator object initialized: %s' % self.ID)

        if dacycle != None:
            self.dacycle = dacycle
        else:
            self.dacycle = {}

    
    def get_initial_data(self):
        """ This method places all initial data needed by an ObservationOperator in the proper folder for the model """

    def setup(self,dacycle):
        """ Perform all steps necessary to start the observation operator through a simple Run() call """

        self.dacycle = dacycle
        self.outputdir = dacycle['dir.output']

    def prepare_run(self):
        """ Prepare the running of the actual forecast model, for example compile code """

        # Define the name of the file that will contain the modeled output of each observation

        self.simulated_file = os.path.join(self.outputdir, 'samples_simulated.%s.nc' % self.dacycle['time.sample.stamp'])
        self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])

    def run(self,lag,dacycle,statevector,advance=False):
        members = statevector.ensemble_members[lag]
        self.forecast_nmembers = int(self.dacycle['da.optimizer.nmembers'])
        self.nparams = int(self.dacycle['nparameters'])
        absolute_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y%m%d%H'))
        absolute_start_time_ch = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y-%m-%d'))
        starth = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.start']).days)*24
        endh = abs((to_datetime(dacycle['abs.time.start'])-dacycle['time.finish']).days)*24

        f = io.CT_CDF(self.simulated_file, method='create')
        logging.debug('Creating new simulated observation file in ObservationOperator (%s)' % self.simulated_file)

        dimid = f.createDimension('obs_num', size=None)
        dimid = ('obs_num',)
        savedict = io.std_savedict.copy() 
        savedict['name'] = "obs_num"
        savedict['dtype'] = "int"
        savedict['long_name'] = "Unique_Dataset_observation_index_number"
        savedict['units'] = ""
        savedict['dims'] = dimid
        savedict['comment'] = "Unique index number within this dataset ranging from 0 to UNLIMITED."
        f.add_data(savedict,nsets=0)

        dimmember = f.createDimension('nmembers', size=self.forecast_nmembers)
        dimmember = ('nmembers',)
        savedict = io.std_savedict.copy() 
        savedict['name'] = "flask"
        savedict['dtype'] = "float"
        savedict['long_name'] = "mole_fraction_of_trace_gas_in_dry_air"
        savedict['units'] = "ppm"
        savedict['dims'] = dimid + dimmember
        savedict['comment'] = "Simulated model value created by COSMO"

        f.add_data(savedict,nsets=0)

        # Open file with x,y,z,t of model samples that need to be sampled

brunner's avatar
octe ok    
brunner committed
96
        f_in = io.ct_read(self.dacycle['ObsOperator.inputfile'],method='read')
brunner's avatar
octe  
brunner committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        # Get simulated values and ID

        ids = f_in.get_variable('obs_num')
        obs = f_in.get_variable('observed')
        mdm = f_in.get_variable('modeldatamismatch')

        f_in.close()

        shape = (self.forecast_nmembers,mdm.size)
        model_data=np.empty(shape=shape)   # 3x7

        self.lambda_file = os.path.join(self.outputdir, 'lambda.%s.nc' % self.dacycle['time.sample.stamp'])
        ofile = Dataset(self.lambda_file, mode='w')
brunner's avatar
brunner committed
111
112
        opar = ofile.createDimension('nparam', self.nparams)
        omem = ofile.createDimension('nensembles', self.forecast_nmembers)#len(members.nmembers))
brunner's avatar
octe  
brunner committed
113

brunner's avatar
brunner committed
114
        l = ofile.createVariable('lambda', np.float32, ('nensembles','nparam'),fill_value=-999.99)
brunner's avatar
octe  
brunner committed
115
116
117
118
119
120
        co2 = np.empty(shape=(self.forecast_nmembers,self.nparams))

        for m in range(0,20):
            co2[m,:] = members[m].param_values
        l[:] = co2
        ofile.close()
brunner's avatar
brunner committed
121
        os.system('cp '+self.lambda_file+' '+dacycle['da.vprm']+'/lambdas.nc')
brunner's avatar
octe  
brunner committed
122
123
124
125
126
127
128
129
130

        os.chdir(dacycle['da.obsoperator.home'])

        if os.path.exists(dacycle['dir.da_run']+'/'+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168)+"/cosmo/output/"):
            if os.path.exists(dacycle['dir.da_run']+"/non_opt_"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168)+"/cosmo/output/"):
                os.rename(dacycle['dir.da_run']+"/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168), dacycle['dir.da_run']+"/old_non_opt_"+dacycle['time.start'].strftime('%Y%m%d%H')+"_"+str(starth+lag*168)+"_"+str(endh+lag*168))
            else:
                os.rename(dacycle['dir.da_run']+"/"+absolute_start_time+"_"+str(starth+lag*168)+"_"+str(endh+lag*168), dacycle['dir.da_run']+"/non_opt_"+dacycle['time.start'].strftime('%Y%m%d%H')+"_"+str(starth+lag*168)+"_"+str(endh+lag*168))

brunner's avatar
brunner committed
131
132
133
        os.system('python run_chain.py '+self.dacycle['run.name']+' '+absolute_start_time_ch+' '+str(starth+lag*168)+' '+str(endh+lag*168)+' -j octe online_vprm cosmo -f')
        sys.exit()
        #os.system('python run_chain.py '+self.dacycle['run.name']+' '+absolute_start_time_ch+' '+str(starth+lag*168)+' '+str(endh+lag*168)+' -j meteo icbc emissions int2lm post_int2lm octe online_vprm cosmo')
brunner's avatar
octe  
brunner committed
134
135
136
137
138
        logging.info('COSMO done!')
        os.chdir(dacycle['dir.da_run'])

        args = [
            (dacycle, starth+168*lag, endh+168*lag-1, n)
brunner's avatar
octe ok    
brunner committed
139
            for n in range(1,self.forecast_nmembers+1)
brunner's avatar
octe  
brunner committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        ]

        with Pool(self.forecast_nmembers) as pool:
            pool.starmap(self.extract_model_data, args)

        for i in range(0,self.forecast_nmembers):
            idx = str(i).zfill(3)
            cosmo_file = os.path.join('/store/empa/em05/parsenov/cosmo_data/model_'+idx+'_%s.nc' % dacycle['time.sample.stamp'])
            ifile = Dataset(cosmo_file, mode='r')
            model_data[i,:] = (np.squeeze(ifile.variables['CO2'][:])*29./44.01)*1E6   # in ppm
            ifile.close()

        for j,data in enumerate(zip(ids,obs,mdm)):
            f.variables['obs_num'][j] = data[0]
            f.variables['flask'][j,:] = model_data[:,j]
        f.close()

        logging.info('ObservationOperator finished successfully, output file written (%s)' % self.simulated_file)

    def run_forecast_model(self, lag, dacycle, statevector, advance):
        self.prepare_run()
        self.run(lag, dacycle, statevector, advance)

    def extract_model_data(self, dacycle, hstart, hstop, ensnum):

        self.dacycle = dacycle
        time_stamp = dacycle['time.sample.stamp']
        abs_start_time = str((to_datetime(dacycle['abs.time.start'])).strftime('%Y%m%d%H'))

        cosmo_out = dacycle['dir.da_run']+"/"+abs_start_time+"_"+str(hstart)+"_"+str(hstop+1)+"/cosmo/output/"
        hhl_cosmo_out = dacycle['dir.da_run']+"/"+abs_start_time+"_0_168/cosmo/output/"
        cosmo_save = "/store/empa/em05/parsenov/cosmo_data/"
        hhl_fn = hhl_cosmo_out+'lffd'+abs_start_time+'c.nc'

        ens = str(ensnum).zfill(3)
        files2cat_jfj=[]
        files2cat_lhw=[]
        files2cat_brm=[]
        files2cat_ssl=[]

brunner's avatar
octe ok    
brunner committed
180
        if ens == "001":
brunner's avatar
octe  
brunner committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            cdo.selname("HHL", input = hhl_fn, output = cosmo_out+"hhl.nc")
            cdo.remapnn("lon=7.99_lat=46.54,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_jfj.nc")
            cdo.remapnn("lon=8.40_lat=47.48,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_lhw.nc")
            cdo.remapnn("lon=8.18_lat=47.19,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_brm.nc")
            cdo.remapnn("lon=7.92_lat=47.92,", input = cosmo_out+"hhl.nc", output = cosmo_out+"hhl_ssl.nc")

        for dt in rrule.rrule(rrule.HOURLY, dtstart=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstart), until=to_datetime(dacycle['abs.time.start'])+timedelta(hours=hstop)):
            dt=dt.strftime('%Y%m%d%H')
            logging.info('Extracting output for ens %s, time %s' % (str(ens),str(dt)))
            co2_in_fn = cosmo_out+'lffd'+dt+'.nc'
            co2_out_jfj = cosmo_out+'CO2_jfj_'+ens+'_'+dt+'.nc'
            co2_out_lhw = cosmo_out+'CO2_lhw_'+ens+'_'+dt+'.nc'
            co2_out_brm = cosmo_out+'CO2_brm_'+ens+'_'+dt+'.nc'
            co2_out_ssl = cosmo_out+'CO2_ssl_'+ens+'_'+dt+'.nc'
brunner's avatar
octe ok    
brunner committed
195
196
197
198
            cdo.expr("'CO2=(CO2_BG"+ens+"-CO2_GPP"+ens+"+CO2_RA"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=7.99_lat=46.54 -selname,QV,CO2_BG"+ens+",CO2_GPP"+ens+",CO2_RA"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_jfj)
            cdo.expr("'CO2=(CO2_BG"+ens+"-CO2_GPP"+ens+"+CO2_RA"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=8.40_lat=47.48 -selname,QV,CO2_BG"+ens+",CO2_GPP"+ens+",CO2_RA"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_lhw)
            cdo.expr("'CO2=(CO2_BG"+ens+"-CO2_GPP"+ens+"+CO2_RA"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=8.18_lat=47.19 -selname,QV,CO2_BG"+ens+",CO2_GPP"+ens+",CO2_RA"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_brm)
            cdo.expr("'CO2=(CO2_BG"+ens+"-CO2_GPP"+ens+"+CO2_RA"+ens+"+CO2_A_CH+CO2_A)/(1.-QV)'", input = "-remapnn,lon=7.92_lat=47.92 -selname,QV,CO2_BG"+ens+",CO2_GPP"+ens+",CO2_RA"+ens+",CO2_A_CH,CO2_A "+co2_in_fn, output = co2_out_ssl)
brunner's avatar
octe  
brunner committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
            files2cat_jfj.append(co2_out_jfj)
            files2cat_lhw.append(co2_out_lhw)
            files2cat_brm.append(co2_out_brm)
            files2cat_ssl.append(co2_out_ssl)

        cdo.cat(input = files2cat_jfj, output = cosmo_out+"CO2_jfj_"+ens+"_"+time_stamp+".nc")
        cdo.cat(input = files2cat_lhw, output = cosmo_out+"CO2_lhw_"+ens+"_"+time_stamp+".nc")
        cdo.cat(input = files2cat_brm, output = cosmo_out+"CO2_brm_"+ens+"_"+time_stamp+".nc")
        cdo.cat(input = files2cat_ssl, output = cosmo_out+"CO2_ssl_"+ens+"_"+time_stamp+".nc")

        sites = ("lhw","brm","jfj","ssl")
        for s,ss in enumerate(sites):
            site_height.main(cosmo_out, str(ens), ss, time_stamp)

        cdo.intlevel("860", input = cosmo_out+"CO2_60lev_"+ens+"_lhw_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_lhw_"+time_stamp+".nc")
        cdo.intlevel("1009", input = cosmo_out+"CO2_60lev_"+ens+"_brm_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc")
        cdo.intlevel("3580", input = cosmo_out+"CO2_60lev_"+ens+"_jfj_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc")
        cdo.intlevel("1205", input = cosmo_out+"CO2_60lev_"+ens+"_ssl_"+time_stamp+".nc", output = cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc")

        cdo.cat(input = cosmo_out+"modelled_"+ens+"_brm_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_jfj_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_lhw_"+time_stamp+".nc "+cosmo_out+"modelled_"+ens+"_ssl_"+time_stamp+".nc ", output = cosmo_save+"model_"+ens+"_"+time_stamp+".nc")
        logging.info('Extracting done for ens %s' % (ens))



################### End Class ObservationOperator ###################

class RandomizerObservationOperator(ObservationOperator):
    """ This class holds methods and variables that are needed to use a random number generated as substitute
        for a true observation operator. It takes observations and returns values for each obs, with a specified 
        amount of white noise added 
    """



if __name__ == "__main__":
    pass