diff --git a/da/preprocessing/emissionmodel.py b/da/preprocessing/emissionmodel.py index 7fe21ac17b13357f43b2163dd3f39459b5e4d6aa..593e77572faa1933616ffcf42c5de5a9dab939c4 100755 --- a/da/preprocessing/emissionmodel.py +++ b/da/preprocessing/emissionmodel.py @@ -949,6 +949,7 @@ class EmisModel(Regional): if isinstance(public_power_tp, pd.core.frame.DataFrame): category_distribution_country *= emission_factors[species][category] public_power_spatial += category_distribution_country * self.hourperyear * public_power_tp['Total'].values[:, None, None] + #logging.debug(np.nansum(category_distribution_country * self.hourperyear)) else: # TODO: add here also a scaling factor? fill_with_cams.append((country, category, public_power_tp, (species, emission_factors[species][category]))) @@ -959,7 +960,7 @@ class EmisModel(Regional): # # For public power specific: Get data from other sources elif gnfr == 'A': - public_power_time = self.energydict[country] + #public_power_time = self.energydict[country] public_power_spatial += category_distribution_country * self.hourperyear else: spatial_distr = np.nan_to_num(category_distribution_country * yremis[i, j])