diff --git a/dash_app/graph.py b/dash_app/graph.py index 030349961932a8149c127f3d9da809e78a255f99..0cd53b8176063a6d64326778bacabc0d9a666b99 100644 --- a/dash_app/graph.py +++ b/dash_app/graph.py @@ -85,6 +85,7 @@ class Graph: elements=elements, userZoomingEnabled=False, userPanningEnabled=False, + maxZoom=2.0, stylesheet=[ { 'selector': '[is_base_node > 0.5]', diff --git a/dash_app/index.py b/dash_app/index.py index 4667393647eb0efb7f0e4aaf983176ddd43546e7..dca4a0a0efd913b9baf3f6dfd25eb3644eedfb33 100644 --- a/dash_app/index.py +++ b/dash_app/index.py @@ -1,6 +1,7 @@ import os from dash_app.app import app from dash_app.layout import layout +import dash_app.callbacks app.layout = layout diff --git a/dash_app/words.py b/dash_app/words.py index 045914cd18bc52df1e46959266d72e76eeed9d3f..53d4180e4b950c4b2ca5b42be56650b2a7f0bd6c 100644 --- a/dash_app/words.py +++ b/dash_app/words.py @@ -6,12 +6,12 @@ class AssociatedWords: def __init__(self): print("\n Word2Vec model is loading. This can take a couple of minutes.") - # self.model = api.load('glove-twitter-200') - # print(" Word2Vec model is ready. Enjoy!!!\n") + self.model = api.load('glove-twitter-200') + print(" Word2Vec model is ready. Enjoy!!!\n") def get_associated_words(self, word, top_n=10): - # gensim_result = self.model.most_similar(word, topn=top_n) - gensim_result = [('apple', 1.0), ('banana', 1.0), ('strawberry', 1.0)] + gensim_result = self.model.most_similar(word, topn=top_n) + # gensim_result = [('apple', 1.0), ('banana', 1.0), ('strawberry', 1.0)] words = self.filter_results(gensim_result, word) return words